Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(BD=DE=EC\)
\(\Rightarrow BD+DE=EC+DE\)
\(\Rightarrow BE=DC\)
=> Ta c/m được \(\Delta EAB=\Delta DAC\left(C.g.c\right)\)
\(\Rightarrow\widehat{EAB}=\widehat{DAC}\)
=> AD = AE
b)
Vì M là trung điểm của BC
\(\Rightarrow BM=CM\)
\(\Rightarrow BD+DM=ME+EC\)
Mà BD = EC
\(\Rightarrow DM=EM\)
=> \(\Rightarrow\Delta DAM=\Delta EAM\left(c.c.c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{EAM}\)
=> AM là tia phân giác của góc DAE
c)
Nếu \(\widehat{A}=60^0\)
Mà AD=AE
=> tam giác ADE đều
=> Các góc còn lại cũng bằng 600
Giải:
a) Ta có: \(BD=DE=EC\left(gt\right)\)
\(\Rightarrow BD+DE=EC+DE\)
\(\Rightarrow BE=CD\) (*)
Xét \(\Delta EAB,\Delta DAC\) có:
\(BE=CE\) ( theo (*) )
\(\widehat{B}=\widehat{C}\) ( do \(\Delta ABC\) cân tại A vì AB = AC )
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta EAB=\Delta DAC\left(c-g-c\right)\)
\(\Rightarrow\widehat{EAB}=\widehat{DAC}\) ( góc t/ứng )
b) Vì \(\Delta EAB=\Delta DAC\)
\(\Rightarrow AD=AE\) ( cạnh t/ứng )
\(\Rightarrow\Delta DAE\) cân tại A
\(\Rightarrow\widehat{ADE}=\widehat{AED}\) (**)
Xét \(\Delta DAM,\Delta EAM\) có:
\(MD=ME\left(=\frac{1}{2}DE\right)\)
\(\widehat{ADE}=\widehat{AED}\) ( theo (**) )
AM: cạnh chung
\(\Rightarrow\Delta DAM=\Delta EAM\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{EAM}\) ( góc t/ứng )
\(\Rightarrow\)AM là tia phân giác của \(\widehat{DAE}\)
c) Trong \(\Delta AED\) cân tại A có \(\widehat{DEA}=60^o\)
\(\Rightarrow\Delta AED\) là một tam giác đều
Vậy...
a, Xét tam giác EAB và tam giác DAC có:
AB = AC (gt)
AD = AE (gt)
BE = CD (BE = BD + DE = DE + EC = CD)
=> Tam giác EAB = Tam giác DAC (c.c.c)
b,M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)
=> AM là đường cao của tam giác ABC
hay AM _I_ BC
mà D, E thuộc BC
=> AM _I_ DE
hay AM là đường cao của tam giác ADE cân tại A (AD = AE)
=> AM là tia phân giác của DAE
a) Tam giác ABC có AB = AC nên tam giác ABC cân tại A
\(\Delta ABE\)= \(\Delta ACD\) ( cgc ) ( AB = AC (gt) ; \(\widehat{B}\) =\(\widehat{C}\) ( tam giác ABC cân tại A) ; BE = CD = \(\frac{2}{3}\) BC )
Do đó \(\widehat{BAE}\) = \(\widehat{DAC}\) => tam giác DAE cân tại A
b) tam giác ABC cân tại A có AM là đường trung tuyến => AM là đường cao của tam giác ABC .
Tam giác DAE cân tại A có AM là đường cao ứng với cạnh DE => AM là đường phân giác của tam giác DAE => AM là tia phân giác của \(\widehat{DAE}\)
c) Tam giác DAE cân tại A có \(\widehat{DAE}\) = 600 => Tam giác DAE là tam giác đều => mỗi góc trong tam giác DAE đều là 600
a: Xét ΔEAB và ΔDAC có
EA=DA
AB=AC
EB=DC
Do đó: ΔEAB=ΔDAC
Suy ra: \(\widehat{EAB}=\widehat{DAC}\)
a, Xet tam giac ABD va tam giac ACE co
.AB=AC
.BD=EC
.AD=AE
suy ra 2 tam giac bang nhau(c.c.c) suy ra goc BAD=CAE (2 goc tuong ung)
goc EAB=BAD+DAE
goc DAC=CAE+DAE
suy ra goc EAB=DAC
b, Xet tam giac DAE co AD=AE suy ra tam giac DAE can tai A (1)
MB=MC, BD=CE suy ra DM=ME suy ra AM la trung tuyen tam giac AED (2)
(1,2) suy ra AM la phan giac goc DAE
c, Tam giac DAE can tai A (cmt) goc DAE=60 suy ra ADE=AED=60
Vay cac goc cua tam giac AED bang nhau = 60