K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Mình chỉ có hình cho câu a) thôi nhé.

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc tương ứng).

=> \(AD\) là tia phân giác của \(\widehat{BAC}.\)

b) Theo câu a) ta có \(\widehat{BAD}=\widehat{CAD}.\)

=> \(\widehat{MAD}=\widehat{NAD}.\)

Xét 2 \(\Delta\) \(AMD\)\(AND\) có:

\(AM=AN\left(gt\right)\)

\(\widehat{MAD}=\widehat{NAD}\left(cmt\right)\)

Cạnh AD chung

=> \(\Delta AMD=\Delta AND\left(c-g-c\right)\)

=> \(\widehat{ADM}=\widehat{ADN}\) (2 góc tương ứng).

Ta có: \(\widehat{ADM}+\widehat{ADN}=180^0\) (vì 2 góc kề bù).

\(\widehat{ADM}=\widehat{ADN}\left(cmt\right)\)

=> \(2.\widehat{ADM}=180^0\)

=> \(\widehat{ADM}=180^0:2\)

=> \(\widehat{ADM}=90^0.\)

=> \(\widehat{ADM}=\widehat{ADN}=90^0\)

=> \(AD\perp MN.\)

Chúc bạn học tốt!

3 tháng 1 2020

a/ Xét ΔADB và ΔADC ta có:

AB = AC (GT)

BD = CD ( D là trung điểm của BC)

AD: cạnh chung

=>ΔADB = ΔADC (c - c - c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc tương ứng)

=> AD là tia phân giác của \(\widehat{BAC}\)

b/Xét ΔAMK và ΔANK ta có:

AM = AN (GT)

\(\widehat{BAD}=\widehat{CAD}\) (câu a)

AK: cạnh chung

=> ΔAMK = ΔANK (c - g - c)

=> \(\widehat{AKM}=\widehat{AKN}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc kề bù

=> \(\widehat{AKM}=\widehat{AKN}\)\(=180^0:2=90^0\)

=>\(AK\perp MN\)

c/ *Xét ΔPMO và ΔDBO ta có:
OB = OM ( M là trung điểm của BM)

\(\widehat{BOD}=\widehat{POM}\) (đối đỉnh)

MD = MP (GT)

=> ΔPMO = ΔDBO (c - g - c)

=> \(\widehat{BDO}=\widehat{MPO}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc so le trong

=> PM // BD (1)

*Có: ΔADB = ΔADC (câu a)

=> \(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc kề bù nên

=> \(\widehat{ADB}=\widehat{ADC}=180^0:2=90^0\)

Lại có: \(\widehat{AKM}=90^0\) (câu b)

=> \(\widehat{AKM}=\widehat{ADB}\)

Nhưng: 2 góc này lại là 2 góc đồng vị

=> MK // BD (2)

Từ (1) và (2)

=> MK và PM trùng nhau

=> M, K, P thẳng hàng

P/s: Dài khủng!

9 tháng 1 2021

Hình bạn tự vẽ nhé.

a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)

nên \(\widehat{BAD}=\widehat{CAD}\)

Xét \(\Delta ABD\) và \(\Delta ACD\) có:

AD là cạnh chung

\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)

AB = AC

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)   (đpcm)

b. Gọi giao điểm của MN và AD là S

Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)

Xét \(\Delta AMS\) và \(\Delta ANS\) có:

AS là cạnh chung

\(\widehat{MAS}=\widehat{NAS}\)  (chứng minh trên)

AM = AN (gt)

\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)

Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AS\perp MN\)

hay \(AD\perp MN\)   (đpcm)

c. Ta có: AM = AN (gt)

\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\)  (định lí)

hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\)  (1)

Lại có: AB = AC (gt)

\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí)  (2)

Từ (1), (2)

\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

\(\Rightarrow\) MN // BC (dấu hiệu nhận biết)  (*)

Xét \(\Delta MOP\) và \(\Delta BDO\) có:

MO = BO (vì O là trung điểm của BM)

\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)

OD = PO (gt)

\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)

\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\) MP // BC (dấu hiệu nhận biết)  (**)

Từ (*), (**)

\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC  (trái với tiên đề Ơ-clit)

\(\Rightarrow\) 3 điểm P, M, N thẳng hàng   (đpcm)

9 tháng 1 2021

hey .you vẽ hộ mk cái hình vs ạ

11 tháng 1 2018

         Đi đâu mà vội mà vàng

Mà vấp phải đá mà quàng phải dây

5 tháng 12 2018

bn phải ra đề bài thì mọi người mới giúp đc bn chứ

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

a: Xét ΔAMB và ΔAMD có

AM chung

MB=MD

AB=AD

Do đó: ΔAMB=ΔAMD

b: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

c: Xét ΔKBE và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKBE=ΔKDC

Suy ra: \(\widehat{BKE}=\widehat{DKC}\)

=>\(\widehat{BKE}+\widehat{BKD}=180^0\)

hay E,K,D thẳng hàng

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BCBài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp...
Đọc tiếp

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BC

Bài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.

Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp bờ AB vẽ các tam giác đều AMC<BMD. Gọi E,F,I,K lần lượt là trung điểm của CM,CB,DM,DA. Cmr:

a. EF//KI. b.EI=KF; c.KF=CD/2

Bài 4:Cho tam giác ABCD. Trên tia đối tia BA lấy D, trên tia đối tia CA lấy E sao cho BD=CE. Gọi M,N,P,Q lần lượt là trung điểm của BC,DE,BE,CD. Cmr:

a. tan giác PMQ cân; b.MN vuông góc với PQ; c. Gọi Ax là tia phân giác góc BAC, Cm: Ax//MN

 

Cảm ơn các bạn giúp mình nhiều, Cảm ơn ạ!!

0