Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Aps dụng định lí đường phân giác trong tam giác ta có :
\(\frac{AD}{DC}=\frac{AB}{BC}\)
Thay số ta đc : \(\frac{12-DC}{DC}=\frac{9}{15}\)
\(\Rightarrow15\times\left(12-DC\right)=9DC\)
\(\Leftrightarrow180-15DC=9DC\)
\(\Rightarrow180=9DC+15DC\)
\(\Leftrightarrow24DC=180\)
\(\Rightarrow DC=180\div24=7.5CM\)
Vậy \(AD=12-7.5=4.5CM\)
Xem lại đề câu B nhé bạn
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/AC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
b: IH/IA=BH/BA
AD/DC=BA/BC
mà BH/BA=BA/BC
nên IH/IA=AD/DC
a) áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(9^2+AC^2=15^2\)
\(81+AC^2=225\)
\(AC^2=144\)
\(AC=12\)
Ta có: \(AD+DC=AC\)( hình vẽ )
\(4,5+DC=12\)
\(DC=7,5\)
hình tự vẽ đi
d) Xét \(\Delta BAI\)và \(\Delta BDA\)có :
\(\widehat{ABD}\)( chung ) ; \(\widehat{AIB}=\widehat{BAD}=90^o\)
\(\Rightarrow\Delta ABI\approx\Delta DBA\left(g.g\right)\)
\(\Rightarrow\frac{AB}{BI}=\frac{BD}{AB}\)\(\Rightarrow BI.BD=AB^2=81\)
Mà BH.BC = AB2 = 81 ( câu c )
\(\Rightarrow\)BI.BD = BH.BC
\(\Rightarrow\)\(\frac{BH}{BI}=\frac{BD}{BC}\)
Xét \(\Delta BHI\)và \(\Delta BDC\)có :
\(\frac{BH}{BI}=\frac{BD}{BC}\); \(\widehat{DBC}\)( chung )
\(\Rightarrow\Delta BHI\approx\Delta BDC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BIH}=\widehat{BCD}\)hay \(\widehat{BIH}=\widehat{ACB}\)
a: Xét ΔBAH có BI là phân giác
nên IA/BA=IH/BH
=>IA*BH=BA*IH
b: ΔACB vuông tạiA có AH vuông góc BC
nên BA^2=BH*BC
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
CH=4^2/5=3,2cm
c: ΔBAC có BD là phân giác
nên DC/DA=BC/BA
=>DC/DA=BA/BH=AI/IH
=>DC*IH=DC*IA
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5
=>AD=4,5cm; CD=7,5cm
d: góc ADI=90 độ-góc ABD
góc AID=góc BIH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADI=góc AID
=>ΔAID cân tại A
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAC có BD là phân giác
nen AD/BA=DC/BC
=>AD/3=DC/5=12/8=1,5
=>AD=4,5cm; DC=7,5cm
d: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
xét tam giác đồng dạng abd và hbi có 1 góc vuông và hai góc nhọn tại b bằng nhau
suy ra hai tam giác đồng dạng
suy ra bd.ih=bi.ad
bây h đi chứng minh ad =ia
cái này dễ tự chứng minh nha
Vẽ giúp mk hình lun nak