Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> tam giác OBC vuông tại O=> BD_|_CE tại O
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100
$BC^2=10^2=100$BC2=102=100
=> tam giác OBC vuông tại O=> BD_|_CE tại O
a: AC=căn 10^2-6^2=8cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
G là giao điểm của 2 đường trung tuyến BD và CE
Suy ra : G là trọng tâm tam giác ABC
Suy ra :
GD = 1/3 BD = 1/3 x 24 = 8 ( cm )
GE = 1/3 CE = 1/3 x 45 = 15 ( cm )
Xét tam giác ABC có :
E là trung điểm AB ( trung tuyến CE )
D là trung điểm AC ( trung tuyến BD )
Suy ra : ED là đường trung bình của tam giác ABC
Suy ra ED : = 1/2 x BC = 1/2 x 34 = 17 ( cm )
Vậy GD = 8 cm
GE = 15 cm
ED = 17 cm
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
a) Xét định lí Pi ta go , ta có
AB2+AC2=BC2
⇒ AC2=BC2−AB2
=102−62=100−36=64=82
⇒ AC = 8cm
áp dụng dịnh lý pytago vào tam giác abc vuông tại a
ab+ac =bc
ac=10^2-6^2
ac =100-36=64
ac=căn 64=8
vậy ac =8cm
b
xét tam giác bad và tam giác bed
bad =bed =90
bd là cạnh chung
abd =dbe
tam giác bad =tam giác bed
ta có ab =de (2 cạnh tưng ứng
ta có gọi g là giao điểm của bd và ae
xét tam giác bag và am giác bge
bd là cạnh chung
ba =be
gba=gbe
tam giác bag =tam giác bge
ta có ga=ge
mà gae =180 kề bù
ag+ge =180
2 ag =180
ag =90
ta có ad =de
ag =ge=90
bd là đường trung trực cửa ae
dpcm
khong làm c và d dc