K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

a) Ta có: BC2=102=100BC2=102=100

AB2+AC2=62+82=100AB2+AC2=62+82=100

Do đó: BC2=AB2+AC2BC2=AB2+AC2(=100)

Xét ΔABC có BC2=AB2+AC2BC2=AB2+AC2(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)

Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)

Suy ra: DA=DE(Hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(Cmt)

ˆADF=ˆEDCADF^=EDC^(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(Hai cạnh tương ứng)

Xét ΔDFC có DF=DC(cmt)

nên ΔDFC cân tại D(Định nghĩa tam giác cân)

6 tháng 4 2018

ta có : BC2 = 102 = 100

          AC2 +AB2 =62 + 82 =36 +64 = 100

       BC2 =AC2 + AB2

suy ra tam giác ABC vuông tại A ( định lý pytago đảo )

5 tháng 5 2019

a, AB = 6 => AB^2 = 6^2 = 36

AC = 8 => AC^2 = 8^2 = 64

=> AB^2 + AC^2 = 36 + 64 = 100

BC = 10 => BC^2 = 10^2 = 100

=> BC^2 = AB^2 + AC^2 

=> tam giác ABC vuông tại A (định lí PTG đảo)

5 tháng 5 2019

a, xét tam giác ABD và tam giác EBD có : BD chung

góc ABD = góc EBD do BD là phân giác

góc DAB = góc DEB = 90 do ...

=> tam giác ABD = tam giác EBD (ch - gn)

=> AD = ED (đn)

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE

=>DE<DF

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC

d: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

mà DF=DC

nên BD là trung trực của CF

31 tháng 3 2018

Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)

Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)

Từ 1 và 2 => ED<FD

31 tháng 3 2018

a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)

​​=> 62+Ac2=10=>AC2=100-36=64=> AC= 8

Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)

6 tháng 8 2020

A B C D E F

A) XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(10^2=6^2+AC^2\)

         \(100=36+AC^2\)

\(\Rightarrow AC^2=100-36\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

ta có \(AD+DC=AC\)

\(\Leftrightarrow3+DC=8\)

\(\Leftrightarrow DC=8-3=5\left(cm\right)\)

B) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

BD LÀ CẠNH CHUNG 

=>\(\Delta ABD\)=\(\Delta EBD\)( CH-GN)

\(\Rightarrow BA=BE\)(HAI CẠNH TƯƠNG ỨNG )

=> \(\Delta BAE\)LÀ TAM GIÁC CÂN TẠI B

c)  XÉT \(\Delta ADF\)VUÔNG TẠI A

\(\Rightarrow DF>AD\left(1\right)\)( CẠNH HUYỀN LỚN NHẤT )

VÌ \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=> \(AD=ED\left(2\right)\)(HAI CẠNH TƯƠNG ỨNG )

TỪ (1) VÀ (2) 

\(\Rightarrow DF>ED\)

23 tháng 6 2020

a, tam giác ABC vuông tại  A (gt)

=> AB^2 + AC^2 = BC^2 (đl Pytago)

có AB = 6; BC = 10 

=> AC = 8 do AC > 0

b, xét tam giác DAB và tam giác DEB có : BD chung

^DAB = ^DEB = 90 

^ABD = ^EBD do BD là phân giác của ^ABC (gt)

=> tg DAB = tg DEB (ch-gn)

c, tg DAB = tg DEB (câu b)

=> DA = DE (Đn)

xét tg DAF và tg DEC có : ^DAF = ^DEC = 90

^ADF = ^EDC (Đối đỉnh)

=> tg DAF = tg DEC (cgv-gnk)

=> DF = DC (đn)

có DC > DE 

=> DE < DF 

+ xét tg CFB có : CA _|_ FB; FE _|_ BC  mà FE cắt CA tại D

=> BD _|_ CF

24 tháng 6 2020

cảm ơn bạn

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)

Suy ra: DA=DE(Hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(Cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(Hai cạnh tương ứng)

Xét ΔDFC có DF=DC(cmt)

nên ΔDFC cân tại D(Định nghĩa tam giác cân)