Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có MN//BC nên \(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)(định lý Thales)
\(\frac{AM}{AB}=\frac{AN}{AC}\Rightarrow\frac{5}{15}=\frac{AN}{12}\Rightarrow AN=\frac{5.12}{15}=4\)
\(\frac{AM}{AB}=\frac{MN}{BC}\Rightarrow\frac{5}{15}=\frac{MN}{20}\Rightarrow MN=\frac{5.20}{15}=\frac{20}{3}\)
Dễ thấy MNPB là hình bình hành nên \(MN=BP=\frac{20}{3}\)
Vậy \(AN=4\);\(MN=BP=\frac{20}{3}\)
Xét \(\Delta ABC:MN//BC\left(gt\right).\)
\(\Rightarrow\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(Talet\right).\\ \Rightarrow\dfrac{5}{8}=\dfrac{AN}{10}.\\ \Rightarrow AN=6,25\left(cm\right).\)
a) Ta có: \(\dfrac{AN}{AB}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(\dfrac{AM}{AC}=\dfrac{4.5}{9}=\dfrac{1}{2}\)
Do đó: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)\(\left(=\dfrac{1}{2}\right)\)
Xét ΔANM và ΔABC có
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔANM\(\sim\)ΔABC(c-g-c)
a) Do MN//AB nên theo Đl Ta-let ta có AM/MB=AN/NC
=>2/3=AN/9 => AN=6cm
khi đó NC= AC-NA = 9-6= 3cm
b) Áp dụng tính chất đường p/g trong tam giác ta có BD/AB=DC/AC
Do BD+DC = BC = 10cm
Áp dụng tính chất dãy tỉ số bằng nhau ta có
BD/AB = DC/AC = (BD+DC)/(AB+AC) = 10/15 = 2/3
Do đó DB/6 = 2/3 => DB = 4 cm
DC/9 =2/3 => DC = 6cm
Vậy DB = 4 cm, DC = 6 cm
a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)
\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm
b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)
\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm
Xét ΔABC có MN//BC
nên AM/AB=AN/AC
=>AN/20=4/20=1/5
nên AN=4(cm)
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
\(M\in AB\)(gt)
\(N\in AC\)(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
a) Theo Thales , ta có :
\(\frac{AM}{MB}=\frac{AN}{NC}\) <=> \(\frac{3}{2}=\frac{4}{NC}\) => \(NC=\frac{8}{3}\)
b) Ta có : AC = AN + NC = \(4+\frac{8}{3}=\frac{20}{3}\)
Do AI là phân giác của góc BAC thuộc tam giác ABC , ta lập được tỷ lệ sau
\(\frac{IB}{IC}=\frac{AB}{AC}=\frac{5}{\frac{20}{3}}=\frac{3}{4}\) => \(\frac{CI}{BI}=\frac{4}{3}\)