Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBIA và ΔCID có
IB=IC
góc BIA=góc CID
IA=ID
Do đó: ΔBIA=ΔCID
b: Xét ΔABC và ΔDCB có
AB=DC
BC chung
AC=BD
Do đó: ΔABC=ΔDCB
c: Xét tứ giác ABDC có
I là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>BD//AC
=>BD vuông góc với AB
Đáp án: C
Gọi H là trung điểm BC ⇒ A ' H ⊥ ( A B C )
S ∆ A B C = 1 2 A B . A C = a 2 3 2
Kết luận V = a 3 . a 2 3 2 = 3 a 3 2
\(\begin{cases}\left(SBC\right)\perp\left(ABCD\right)\\SH\perp CB\\\left(SBC\right)\cap\left(ABCD\right)=AB\end{cases}\Rightarrow SH\perp\left(ABCD\right)}\)
a: Vì \(BC^2< >AB^2+AC^2\)
nên ΔABC không vuông
b; XétΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)