Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có AB2+ AC2=212+282 = 1225
Lại có BC2 = 352 = 1225
=> AB2+AC2=BC2 ( Đinh lí py ta go đảo )
=> tam giác ABC là tam giác vuông
b,Ta có sin B = \(\dfrac{AC}{BC}=\dfrac{28}{35}=0,8\)
sin C = \(\dfrac{AB}{BC}=\dfrac{21}{35}=0,6\)
a) Ta có: \(AB^2+AC^2=21^2+28^2=1225=35^2=BC^2\)
=> Tam giác ABC vuông tại A(Pytago đảo)
b) Xét tam giác ABC vuông tại A có:
\(sinB=\dfrac{AC}{BC}=\dfrac{28}{35}=\dfrac{4}{5}\)
\(sinC=\dfrac{AB}{BC}=\dfrac{21}{35}=\dfrac{3}{5}\)
c) Áp dụng HTL:
\(AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{21^2}{35}=\dfrac{63}{5}\left(m\right)\)
\(CH=BC-BH=35-\dfrac{63}{5}=\dfrac{112}{5}\left(m\right)\)
d) Xét tam giác ABC vuông tại A có:
AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.35=17,5\left(m\right)\)
Áp dụng HTL:
\(AH^2=BH.HC\)
\(\Rightarrow AH=\sqrt{BH.HC}=\sqrt{\dfrac{63}{5}.\dfrac{112}{5}}=\dfrac{84}{5}\left(m\right)\)
Ta có: \(HM=BM-BH=\dfrac{1}{2}BC-BH\)(do AM là trung tuyến ứng với cạnh huyền)
\(\Rightarrow HM=\dfrac{1}{2}.35-\dfrac{63}{5}=\dfrac{49}{10}\left(m\right)\)
\(S_{AHM}=\dfrac{1}{2}.AH.HM=\dfrac{1}{2}.\dfrac{84}{5}.\dfrac{49}{10}=\dfrac{1029}{25}\left(m^2\right)\)
a: Xét ΔABC có \(AB^2=AC^2+BC^2\)
nên ΔABC vuông tại C
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=6(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{B}=60^0\)
a),b) Áp dụng tslg trong tam giác ABC vuông tại A:
\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}=\dfrac{12}{13}\\sinC=\dfrac{AB}{BC}=\dfrac{5}{13}\end{matrix}\right.\)
c) Ta có: \(sinB=\dfrac{12}{13}\Rightarrow\widehat{B}\approx67^0\)
\(sinC=\dfrac{5}{13}\Rightarrow\widehat{C}\approx23^0\)
Hình tự vẽ nha
Kẻ phân giác \(AD,BK\perp AD\)
\(\sin\dfrac{A}{2}=\sin BAD\)
xét \(\Delta AKB\) vuông tại K,có:
\(\sin BAD=\dfrac{BK}{AB}\left(1\right)\)
Xét \(\Delta BKD\) vuông tại K,có :
\(BK\le BD\) thay vào (1):
\(\sin BAD\le\dfrac{BD}{AB}\left(2\right)\)
lại có:\(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{BD}{BD+CD}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow BD=\dfrac{AB\cdot AC}{AB+AC}\) thay vào (2)
\(\sin BAD\le\dfrac{\dfrac{AB\cdot AC}{AB+AC}}{AB}=\dfrac{BC}{AB+AC}\)
\(\RightarrowĐPCM\)
Tick plz
\(BC^2=35^2=1225\)
\(AB^2+AC^2=21^2+28^2=1225\)
\(\Rightarrow BC^2=AB^2+AC^2\)
=> tam giác ABC vuông (tính chất Pytago đảo)
\(\sin B=\frac{AC}{BC}=\frac{28}{35}=0,8\Rightarrow B=53,1^o\)
\(\sin C=\frac{AB}{BC}=\frac{21}{35}=0,6\Rightarrow C=36,9^o\)