Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Suy ra:
Xét △ ADB và △ ABC, ta có:
+ Góc A chung
+ (chứng minh trên)
Suy ra: △ ADB đồng dạng △ ABC (c.g.c)
Vậy ∠ (ABD) = ∠ (ACB)
Xét tam giác ABD và tam giác ACB ta có ;
^BAD = ^BAC = 900
\(\frac{AB}{AC}=\frac{AD}{AB}=\frac{10}{20}=\frac{5}{10}=\frac{1}{2}\)
Vậy tam giác ABD ~ tam giác ACB ( c.g.c )
=> ^ABD = ^ACB ( 2 góc tương ứng )
Xét ΔABD và ΔACB có
AB/AC=AD/AB
góc A chung
=>ΔABD đồng dạng với ΔACB
=>góc ABD=góc ACB
\(BD=AB+AD=4+5=9\left(cm\right)\)
\(\Delta ABC\) và \(\Delta CBD\) có:
\(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)
Góc B chung
\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)
b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)
c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)
Giả sử ∆A'B'C' ∽ ∆ABC, hiệu độ dài tương ứng của A'B' và AB là 12,5.
Ta có: = mà =
=> = => = = = = 6,25 cm
Giả sử ∆A'B'C' ∽ ∆ABC, hiệu độ dài tương ứng của A'B' và AB là 12,5.
Ta có: CABCCA′B′C′CABCCA′B′C′CABCCA′B′C′= 151715171517 mà CABCCA′B′C′CABCCA′B′C′CABCCA′B′C′ = ABA′B′ABA′B′ABA′B′
=> 151715171517 = ABA′B′ABA′B′ABA′B′ => AB15AB15AB15 = A′B′17A′B′17A′B′17 = A′B′−AB17−15A′B′−AB17−15A′B′−AB17−15 = 12.5212.5212.52 = 6,25 cm
b) Ta có: AD+DC=AC(D nằm giữa A và C)
nên DC=AC-AD=3-1=2(cm)
Ta có: DE=AD(gt)
mà AD=1cm(cmt)
nên DE=1cm
Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)
Xét ΔBDE và ΔCDB có
\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)
\(\widehat{BDE}\) chung
Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)
a) Ta có: AD+DE+EC=AC
mà AD=DE=EC(gt)
nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=1+1=2\)
hay \(BD=\sqrt{2}cm\)
Vậy: \(BD=\sqrt{2}cm\)