K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

b: Xét ΔEDB có

EA là đường cao

EA là đường trung tuyến

Do đó: ΔEDB cân tại E

Xét ΔCBD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

Xét ΔBEC và ΔDEC có 

BE=DE

EC chung

BC=DC

Do đó: ΔBEC=ΔDEC

13 tháng 2 2022

thx :))

21 tháng 2 2021

Đáp án:

a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)

=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)

=> BC2=82+62=100BC2=82+62=100

=> BC=10BC=10cm

b) Vì AB = AD (gt)

mà A  BD (gt)

=> A trung điểm BD (ĐN trung điểm)

=> CA trung tuyến BD (ĐN trung tuyến)

lại có: CA  BD (AB  AC do Aˆ=90oA^=90o)

=> ΔΔCBD cân tại C (dhnb)

=> BC = CD (ĐN ΔΔ cân)

và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)

=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)

Xét ΔΔBEC và ΔΔDEC có:

BC = CD (cmt)

C1ˆ=C2ˆC1^=C2^ (cmt)

EC: cạnh chung

=> ΔΔBEC = ΔΔDEC (c.g.c)

c) Vì CE là trung tuyến của ΔΔBCD (cmt)

mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)

=> E là trọng tâm ΔΔBCD (dhnb)

=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)

 

=> DE đi qua trung điểm của BC (ĐN trung tuyến)

1 tháng 5 2015

a) Áp dụng định lí Pi-ta-go vào tam ABC có:

BC^2=AB^2+AC^2

BC^2=8^2+6^2

BC^2=64+36

<=>BC^2=96

BC^2=căn bậc của 96=bạn tự tính nha

4 tháng 5 2017

64+36=100 mà bạn

Bài 12: 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=8^2+6^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔABC vuông tại A và ΔADC vuông tại A có 

AC chung

AB=AD(gt)

Do đó: ΔABC=ΔADC(hai cạnh góc vuông)

Suy ra: CB=CD(hai cạnh tương ứng)

Xét ΔEAB vuông tại A và ΔEAD vuông tại A có 

EA chung

AB=AD(gt)

Do đó: ΔEAB=ΔEAD(hai cạnh góc vuông)

Suy ra: EB=ED(hai cạnh tương ứng)

Xét ΔCEB và ΔCED có

CE chung

CB=CD(cmt)

EB=ED(cmt)

Do đó: ΔCEB=ΔCED(c-c-c)

21 tháng 2 2021

MF vuông góc vs AB chứ

26 tháng 1 2016

Đừng tin bn Thạch bạn ấy nói dối đấy

26 tháng 1 2016

Dễ mà p áp dụng Pytago câu a, còn mấy câu kia mìh lm` biến vẽ hìh Cm qá p ơi.

a: BC=10cm

b: Xét ΔEDB có

EA là đường cao

EA là đường trung tuyến

Do đó: ΔEDB cân tại E

Xét ΔCDB có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCDB cân tại C

Xét ΔBEC và ΔDEC có

BE=DE

EC chung

BC=DC

Do đó: ΔBEC=ΔDEC