K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 10 2021
a: \(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}\)
\(=\overrightarrow{CB}+\overrightarrow{BC}\)
\(=\overrightarrow{0}\)
b: \(\overrightarrow{AM}+\overrightarrow{AP}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{2}\cdot2\cdot\overrightarrow{AN}=\overrightarrow{AN}\)
Lời giải:
a)
Vì \(A,C',B\) theo thứ tự là ba điểm thẳng hàng, nên \(\overrightarrow {BC'},\overrightarrow{C'A}\) là hai vector cùng phương, cùng hướng.
Mặt khác \(BC'=C'A\) do $C'$ là trung điểm nên \(\overrightarrow{BC'}=\overrightarrow{C'A}=\frac{\overrightarrow{BA}}{2}(1)\)
Lại có, do \(\frac{B'C}{B'A}=\frac{CA'}{A'B}=1\Rightarrow A'B'\parallel AB\) và \(A'B'=\frac{1}{2}BA\)
Mà \(\overrightarrow {A'B'}\) cùng hướng với \(\overrightarrow{BA}\) nên \(\overrightarrow{A'B'}=\frac{\overrightarrow{BA}}{2}(2)\)
Từ \((1),(2)\Rightarrow \overrightarrow{BC'}=\overrightarrow{C'A}=\overrightarrow{A'B'}\)
b)
Tương tự cách của phần a, ta có:
\(\overrightarrow{B'C'}=\overrightarrow{CA'}=\overrightarrow{A'B}\)
\(\overrightarrow{C'A'}=\overrightarrow{AB'}=\overrightarrow{B'C}\)