K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 4 2019

Có vẻ bạn chép sai đề, do đề bài cho biết tam giác có 1 góc có số đo cố định ko phụ thuộc \(x\) nên ta cho x một giá trị bất kì rồi sử dụng định lý hàm cos để tính 3 góc, giả sử cho \(x=2\Rightarrow\left\{{}\begin{matrix}a=7\\b=5\\c=5\end{matrix}\right.\)

Tam giác này cân tại A nên chỉ cần tính góc A và B

\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{1}{50}\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{7}{10}\)

Không có đáp án nào cả

a: góc C=90-30=60 độ

Xét ΔBAC vuông tại A có cos B=AB/BC

nên \(BC=\dfrac{2\sqrt{3}}{cos30}=4\left(cm\right)\)

=>AC=2cm

b: Xét ΔbAC vuông tại A có cos B=AB/BC

nên AB/BC=1/2

=>BC=2

=>AC=căn 3

24 tháng 6 2019

Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)

Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)

Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn

NV
12 tháng 6 2020

\(c^4-2\left(a^2+b^2\right)c^2+\left(a^2+b^2\right)^2=a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2-c^2\right)^2=a^2b^2\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2+b^2-c^2=ab\\a^2+b^2+c^2=-ab\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{ab}{2ab}=\frac{1}{2}\\cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{-ab}{2ab}=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C=60^0\\C=120^0\end{matrix}\right.\)

12 tháng 6 2020

oke bạn nhó