K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

b. Xét ΔABD và ΔHBD có:

∠(ABD) = ∠(DBH) ( do BD là tia phân giác)

Cạnh BD chung

⇒ ΔABD = ΔHBD (cạnh huyền – góc nhọn) (2 điểm)

20 tháng 4 2022

undefined

a) có BE là tia p/g của góc ABC

       => góc B1 = góc B2 = góc ABC/2 = 600 /2 = 300

  có △ABC vuông tại A => △ABE vuông tại A

         EH⊥BC=> △HBE vuông tại H

Xét △ vuông ABE và △vuông HBE có

             góc B1 = góc B2

                    BE chung

=>△ vuông ABE =△vuông HBE ( cạnh huyền - góc nhọn)

b) có △ABE vuông tại A=> góc B1 + góc E1 = 900

                                         góc E1 = 600   ( vì góc B1 = 300)

có △ vuông ABE =△vuông HBE

    => góc E1 = góc E2 

mà HK//BE => góc E1 = góc K1     (ĐV)

                       và góc E2 = góc H1 (SLT)

=> góc E1 = góc E2 = góc K1=góc H1 = 600

 => △HEK đều

c) có góc E1 = góc E2 ; góc E3 = góc E4

  =>góc E1 +góc E4 = góc E2 + góc E3

=> góc BEM= góc BEC

Xét △BEM và △ BEC có

             góc B1 = góc B2

                   BE chung

          góc BEM= góc BEC

=> △BEM = △ BEC (g.c.g)

=>BM=BC

=>△BMC cân tại B

trong △BMC có BN là đường p/g xuất phát từ đỉnh B

lại có △BMC cân tại B

=> BN cũng là đường trung tuyến xuất phát từ đỉnh B

=> N là trung điểm của MC

=> NM=NC

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

a: góc C=180-80-60=40 độ

góc A>góc B>góc C

=>BC>AC>AB

b: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

c: Xét ΔDAH và ΔDMC có

góc DAH=góc DMC

DA=DM

góc ADH=góc MDC

=>ΔDAH=ΔDMC

=>DH=DC

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}+60^0=90^0\)

hay \(\widehat{C}=30^0\)

Vậy: \(\widehat{C}=30^0\)

a) Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\left(30^0< 60^0< 90^0\right)\)

mà cạnh đối diện với góc C là cạnh AB

và cạnh đối diện với góc B là cạnh AC

và cạnh đối diện với góc A là cạnh BC

nên AB<AC<BC(đpcm)

a: Xet ΔAHN và ΔCHM có

AH=CH

góc HAN=góc HCM

AN=CM

=>ΔAHN=ΔCHM

b: Xet ΔAHM và ΔBHN co

AH=BH

góc HAM=góc HBN

AM=BN

=>ΔAHM=ΔBHN

4 tháng 4 2020

a, Xét △ABM vuông tại A và △DBM vuông tại D

Có: BM là cạnh chung

      ∠ABM = ∠DBM (gt)

=> △ABM = △DBM (ch-gn)

b, Xét △ABC vuông tại A và △DBE vuông tại D

Có: AB = DB (△ABM = △DBM)

      ∠ABC là góc chung

=> △ABC = △DBE (cgv-gnk)

=> AC = DE (2 cạnh tương ứng)

c, Xét △AME vuông tại A và △DMC vuông tại D

Có:  AM = MD (△ABM = △DBM)

   ∠AME = ∠DMC (2 góc đối đỉnh)

=> △AME = △DMC (cgv-gnk)

d, Vì AB = BD (cmt)  => B thuộc đường trung trực của AD

Vì AM = DM (cmt) => M thuộc đường trung trực của AD

=> BM là đường trung trực của AD

=> BM ⊥ AD

e, Xét △DHC vuông tại K và △AKE vuông tại H

Có: DC = AE (△DMC = △AME)

  ∠DCH = ∠AEK (△ABC = △DBE)

=> △DHC = AKE (ch-gn)

f, Xét △AMK vuông tại K và △DMH vuông tại H

Có: AM = MD (cmt)

   ∠AMK = ∠DMH (2 góc đối đỉnh)

=> △AMK = △DMH (ch-gn)

=> MK = MH (2 cạnh tương ứng)

Xét △MKN vuông tại K và △MHN vuông tại H

Có: MK = MH (cmt)

     MN là cạnh chung

=> △MKN = △MHN (ch-cgv)

=> ∠KMN = ∠HMN (2 góc tương ứng)

=> MN là phân giác KMH

g, Ta có: AK + KN = AN và DH + HN = DN

Mà AK = DH (△AMK = △DMH) ; KN = HN (△MKN = △MHN)

=> AN = DN

Xét △BAN và △BDN

Có: AB = BD (cmt)

      AN = DN (cmt)

    BN là cạnh chung

=> △BAN = △BDN (c.c.c)

=> ∠ABN = ∠DBN (2 góc tương ứng)

=> BN là phân giác ABD 

Mà BM là phân giác ABD 

=> BN ≡ BM

=> 3 điểm B, M, N thẳng hàng

h, Để △ADN là tam giác đều mà AN = DN (cmt)

<=> ∠AND = 60o   <=> ∠ANM + ∠MND = 60o

Mà ∠ANM = ∠MND (△BAN = △BDN)

<=> ∠ANM = ∠MND = 30o

Vì AB ⊥ AC (gt) và DH ⊥ AC (gt) => DN ⊥ AC

=> AB // DN

=> ∠ABN = ∠BND (2 góc so le trong) và ∠ANB = ∠NBD (2 góc so le trong)

Mà ∠ANB = ∠BND = 30o (cmt)

=> ∠ABN = ∠NBD = 30o 

=> ∠ABN + ∠NBD = 30o + 30o 

=> ∠ABD = 60o 

=> ∠ABC = 60o

Vậy để △ADN là tam giác đều khi △ABC có ∠ABC = 60o  

28 tháng 4 2019

Sai đề rùi
Góc ABE ko có cắt BD tại F đc nha!!!

28 tháng 4 2019

làm a b thui