Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình vẽ
a, Ta có; \(CN=BM\)
\(CN\leftarrow MN=BM-MN\)
\(CM=BN\)
Xét \(\Delta ACM\) và \(\Delta ABN\)
\(AC=AB''gt''\)
\(CM=BN\)
\(\widehat{ABM}=\widehat{ABN}''gt''\)
\(\Rightarrow\Delta ACM=\Delta ABN\)
\(\Rightarrow AM=AN\)
\(\Rightarrow\Delta AMN\) Cân
b, \(\Delta ABM\) cân tại \(B\rightarrow\widehat{ABM}=\widehat{MAB}\)
\(\Rightarrow\widehat{ABM}=90^o-\widehat{CAM}\)
Mà \(\widehat{ABM}=180^o-\widehat{AMC}\)
\(\Rightarrow180^o-''180^o-\widehat{CAM}-\widehat{AMC}''\)
\(\Rightarrow\widehat{CAM}+\widehat{ACM}\)
Từ 1 và a/ \(\Rightarrow90^o-\widehat{CAM}-CAM+\widehat{AMC}\)
\(\Leftrightarrow\widehat{CAM}=\frac{90^o+\widehat{ACM}}{2}=\frac{45^o}{2}=22\)
c, \(\widehat{NAM}=90^o-2.\widehat{CAM}=45^o\)
P/s; Em ko chắc đâu nhé
*Tự vẽ hình
a) Có : DE//BC(GT)
EF//AB(GT)
=> BDEF là hình bình hành
=> BD=EF
Mà : AD=DB(GT)
=> AD=EF (đccm)
b) Ta có : AD=DB(GT)
DE//BC (GT)
=> DE là đường trung bình của tam giác ABC
=> AE=EC
Có : AE=EC(cmt)
EF//AB(GT)
=> EF là đường trung bình của tam giác ABC
=> BF=FC
Mà : BF=DE(BDEF-hình bình hành)
=> FC=DE
Xét tam giác ADE và EFC có :
AE=EC(cmt)
AD=EF(cm ý a)
DE=FC(cmt)
=> Tam giác ADE=EFC(c.c.c)
c) Đã chứng minh ở ý b
*Cách khác:
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: BD // EF (vì AB /// EF)
=> Góc BDF = góc DFE (2 góc so le trong)
Vì DE // BC (gt)
nên góc EDF = góc BFD (2 góc so le trong)
Xét tam giác EDF và tam giác BDF có:
Góc BDF = góc DFE (chứng minh trên)
DF là cạnh chung
Góc EDF = góc BFD (chứng minh trên)
=> Tam giác DEF = tam giác FBD (g.c.g)
=> BD = EF ( 2 cạnh tương ứng) (đpcm)
Mà BD = AD (vì D là trung điểm của AB)
=> AD = EF (đpcm)
b) Ta có: AB // EF (gt)
=> Góc A = góc CEF (2 góc đồng vị)
Lại có: tam giác DEF = tam giác FBD (chứng minh trên)
=> Góc DEF = góc B (2 góc tương ứng) (1)
Mà DE // BC (gt)
=> Góc DEF = góc CFE (2 góc so le trong) (2)
Góc ADE = góc B (2 góc đồng vị)
Từ (1), (2) => Góc B = góc CFE
Mà góc B = góc ADE (chứng minh trên)
=> Góc ADE = góc CFE
Xét tam giác ADE và tam giác CEF có:
Góc CEF = góc A (chứng minh trên)
AD = EF (chứng minh trên)
Góc ADE = góc CFE (chứng minh trên)
=> Tam giác ADE = tam giác EFC (g.c.g) (đpcm)
c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)
=> AE = CE (2 cạnh tương ứng) (đpcm)
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
cho tam giác ABC có góc A gấp đôi góc B vẽ tia phân giác AD của góc A
từ D vẽ DE song song với AB ( E thuộc AC)
từ E vẽ EF song song với AD ( F thuộc BC)
từ F vẽ FK song song với DE (K thuộc AC)
a) tìm tất cả các góc = góc B
b)tìm trên hình vẽ các góc có 2 góc bằng nhau
c)CMR :DE là phân giác của góc ADC,EF là phân giác của góc DEC,FK là phân giác của góc EFC