Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMO=góc AFO=góc ANO=90 độ
=>A,M,F,O,N cùng thuộc 1 đường tròn
b: Gọi I là giao của MN với AO
=>I là trung điểm của MN
AI*AO=AM^2
Xét ΔAMH và ΔAFM có
góc AMH=góc AFM
góc MAH chung
=>ΔAMH đồng dạng với ΔAFM
=>AH*AF=AI*AO
=>góc AHI=góc AOF
=>OFHI nội tiếp
=>M,N,H thẳng hàng
a) Xét hai tam giác ABD và ACE có:
\(\widehat{A}\) chung
\(\widehat{ADB}=\widehat{AEC}=90^o\)
\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)
b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.
c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.
Khi đó \(\widehat{AKN}=\widehat{AMN}\) (Hai góc nội tiếp cùng chắn cung AN)
Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)
Suy ra \(\widehat{AKN}=\widehat{ANM}\)
d) Gọi J là giao điểm của MN với AO.
Xét tam giác vuông ANO, đường cao NJ, ta có:
\(AJ.AO=AN^2\) (Hệ thức lượng)
Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)
\(\Rightarrow AJ.AO=AH.AK\)
\(\Rightarrow AN^2=AH.AK\)
\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)
Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.
Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng (g g) thì sao được ??
a) Ta có: \(\widehat{AMO}=\widehat{ADO}=\widehat{ANO}=90^o\) nên \(M,N,D\) cùng nhìn \(AO\) dưới một góc vuông suy ra \(M,D,O,N,A\) cùng thuộc một đường tròn.
b) Gọi \(F\) là giao điểm của \(AC\) và đường tròn \(\left(O\right)\).
\(\Delta ANF\sim\Delta ACN\left(g.g\right)\) suy ra \(AN^2=AC.AF\).
Xét tam giác \(AHN\) và tam giác \(AND\):
\(\widehat{HAN}=\widehat{NAD}\) (góc chung)
\(\widehat{ANH}=\widehat{ADN}\) (vì \(AMDON\) nội tiếp, \(\widehat{ANH},\widehat{ADN}\) chắn hai cung \(\stackrel\frown{AM},\stackrel\frown{AN}\) mà \(AM=AN\))
\(\Rightarrow\Delta AHN\sim\Delta AND\left(g.g\right)\)
suy ra \(AN^2=AH.AD\)
suy ra \(AC.AF=AH.AD\)
\(\Rightarrow\Delta AFH\sim\Delta ADC\left(c.g.c\right)\Rightarrow\widehat{AFH}=\widehat{ADC}=90^o\)
suy ra \(\widehat{HFC}=90^o\) mà \(\widehat{BFC}=90^o\) (do \(F\) thuộc đường tròn \(\left(O\right)\))
suy ra \(B,H,F\) thẳng hàng do đó \(BH\) vuông góc với \(AC\).
Tam giác \(ABC\) có hai đường cao \(AD,BF\) cắt nhau tại \(H\) suy ra \(H\) là trực tâm tam giác \(ABC\).