Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b: Xét ΔOIB vuông tạiI và ΔOKC vuông tại K có
góc IOB=góc KOC
=>ΔOIB đồng dạng vơi ΔOKC
=>OI/OK=OB/OC
=>OI*OC=OK*OB
c: Xét ΔBOH vuông tại H và ΔBCK vuông tại K có
góc OBH chung
=>ΔBOH đồng dạng với ΔBCK
d: Xét ΔCHO vuông tại H và ΔCIB vuông tại I có
góc HCO chung
=>ΔCHO đồng dạng với ΔCIB
=>CH/CI=CO/CB
=>CH*CB=CI*CO
ΔBOH đồng dạng với ΔBCK
=>BO/BC=BH/BK
=>BO*BK=BH*BC
BO*BK+CO*CI=BH*BC+CH*BC=BC^2
d) Xét tam giác BOH và tam giác BCK ta có:
\(\left\{{}\begin{matrix}\widehat{OBC}=\widehat{KBC}\left(chung\right)\\\widehat{OHB}=\widehat{BKC}\left(=90^o\right)\end{matrix}\right.\)
\(\Rightarrow\Delta OHB\sim\Delta CKB\left(g-g\right)\)
\(\Rightarrow\dfrac{BO}{CB}=\dfrac{BH}{BK}\left(tsdd\right)\)
\(\Rightarrow BH.BC=BO.BK\)
Xét tam giác COH và tam giác BCI ta có:
\(\left\{{}\begin{matrix}\widehat{OCH}=\widehat{ICB}\left(chung\right)\\\widehat{OHC}=\widehat{BIC}\left(=90^o\right)\end{matrix}\right.\)
\(\Rightarrow\Delta OHC\sim\Delta BIC\left(g-g\right)\)
\(\Rightarrow\dfrac{CO}{CB}=\dfrac{CH}{CI}\left(tsdd\right)\)
\(\Rightarrow CH.BC=CO.CI\)
Mà \(BH.BC=BO.BK\) (cmt)
Nên CO.CI+BO.BK=CH.BC+BH.BC=BC.BC=BC2
a, xét tam giác AEB và tam giác AIC có : ^A chung
^AIC = ^AEB = 90
=> tam giác AEB đồng dạng tam giác AIC (g-g)
b, tam giác AEB đồng dạng với tam giác AIC (câu a)
=> AE/AB = AI/AC (Đn)
xét tam giác AIE và tam giác ACB có : ^A chung
=> tam giác AIE đồng dạng với tam giác ACB (c-g-c)
a)CM: tam giác BOI \(\approx\) tam giac COK (gg) => \(\dfrac{BO}{BI}=\dfrac{CO}{OK}\Leftrightarrow OB.OK=CO.OI\)
b) Xét tam giac OKI va tam giac OCB có:
Góc IOK=Góc BOC(dđ)
\(\dfrac{OI}{OK}=\dfrac{OC}{OB}\left(\Delta BOI\approx\Delta COK\right)\)
=> \(\Delta OKI\approx\Delta OCB\left(cgc\right)\)
c) Xét tam giac BOH và tam giac BCK có:
góc BHO = góc BKC ( = 90 độ)
góc B chung
=> \(\Delta BOH\approx\Delta BCK\left(gg\right)\)
d) câu d mình chưa nghĩ ra ,bạn đợi chút