K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Lời giải:

Ta có:

\(\widehat{MBD}=\widehat{MBC}=\widehat{MAC}\) (góc nội tiếp cùng chắn cung $MC$)

\(\widehat{MAC}=\widehat{EBC}=\widehat{HBD}\) (đều \(=90^0-\widehat{C}\) )

\(\Rightarrow \widehat{MBD}=\widehat{HBD}\)

Xét tam giác $MBD$ và $HBD$ có:

\(\widehat{MBD}=\widehat{HBD}\) (cmt)

\(\widehat{MDB}=\widehat{HDB}=90^0\)

\(\Rightarrow \triangle MBD\sim \triangle HBD(g.g)\)

\(\Rightarrow \frac{MD}{HD}=\frac{BD}{BD}=1\Rightarrow MD=HD\)

Vậy $BC$ vừa vuông góc, vừa đi qua trung điểm $D$ của $HM$

Do đó $BC$ là đường trung trực của $HM$ hay $H,M$ đối xứng nhau qua $BC$ (đpcm)

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Hình vẽ:

Violympic toán 9

25 tháng 1 2021

I là trung điểm BC nha

 

18 tháng 8 2019

A B C O M N E I K O'

a) Ta có ^BME = ^BOE = 2.^BIE (= 2.^BIM) => ^BIM = ^MBI = ^BME/2 => \(\Delta\)MBI cân tại M (đpcm).

b) Ta dễ thấy ^KNA = ^OBA = ^OAB (= 300) => \(\Delta\)NKA cân tại K => KA = KN (1)

Lại có ^BEN = 1800 - ^BON = 600 = ^CAB = ^BEC => Tia EN trùng tia EC hay N,E,C thẳng hàng

Từ đó ^CMN = ^BEC = 600 = ^CBA => MN // BK

Mà tứ giác BMNK nội tiếp (O') nên KN = BM = IM (Vì \(\Delta\)MBI cân tại M)  (2)

Từ (1) và (2) suy ra IM = KA (đpcm).