Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bốn điểm A,B, H, E cùng nằm trên đờng tròn tâm N và HE// CD.
ABHE nội tiếp ⇒ EHCˆ=BAEˆ
mà BCDˆ=BAEˆ
⇒ EHCˆ=BCDˆ
⇒HE//CD
b) M là tâm đường tròn ngoại tiếp tam giác HEF.
Hướng giải
Cần phải cm HM=ME=MF
Nhận thấy NH=NE
⇒ NM là đường trung trực của HE
⇒ cần chứng minh NM vuông góc với HE
mà NM // AC (đường trung bình)
AC vuông góc với CD (góc nội tiếp chắn nửa đường tròn)
lại có CD // HE (cm trên)
Tới đây bài toán được giải quyết.
CM HM =HF cũng tương tự
Cm HF//BD
Gọi L là trung điểm AC
LM là đường trung bình tam giác ABC
....
cm tương tự như trên sẽ có MH = MF =ME
⇒ dpcm
a: ΔADC vuông tại D
=>AD<AC
ΔBEC vuông tại E
=>BE<BC
=>AD+BE<BC+AC
b: CA<CB
=>góc CAB>gócCBA
=>90 độ-góc CAB<90 độ-góc CBA
=>góc HBA<góc HAB
=>HA<HB
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó;ΔABD=ΔHBD
b: Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADE}=\widehat{HDC}\)
Do đó: ΔADE=ΔHDC
Suy ra: AE=HC
mà BA=BH
nên BE=BC
=>ΔBEC cân tại B
c: Ta có: ΔBAD=ΔBHD
nên AD=DH
mà DH<DC
nên AD<DC