K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AKHF có 

\(\widehat{AKH}\) và \(\widehat{AFH}\) là hai góc đối

\(\widehat{AKH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AKHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Câu a thì như bạn Thịnh giải. Câu b bạn xem lại đề. $AF$ vốn dĩ cắt $(O)$ tại $A,F$ rồi thì làm sao cắt $(O)$ tại $J$ nữa?

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

a: góc BFH+góc BMH=180 độ

=>BFHM nội tiếp

b: góc AMC=góc AFC=90 độ

=>AFMC nội tiếp

 

30 tháng 4 2021

A B C D H F E G I M O K

a) Xét Δ AFH vuông tại F => A, F, H thuộc đường tròn đường kính AH

ΔAGH vuông tại G => A, G, H thuộn đường tròn đường kính AH

=> Tứ giác AFHG nội tiếp đường tròn đường kính AH

CMTT => BGFC nội tiếp đường tròn đường kính BC

b) Do I là tâm đường tròn ngoại tiếp tứ giác AFHG => I là trung điểm AH

M là tâm đường tròn ngoại tiếp tứ giác BGFC => M là trrung điểm BC

Xét ΔAHG vuông tại G, trung tuyến GI => GI = IA = IH => ΔIAG cân tại I => \(\widehat{IAG}=\widehat{IGA}\)

CMTT => \(\widehat{MCG}=\widehat{MGC}\). Mà \(\widehat{MCG}=\widehat{IAG}\) (cùng phụ \(\widehat{GBC}\))                => \(\widehat{MGC}=\widehat{IGA}\)

=> \(\widehat{IGA}+\widehat{IGH}=\widehat{MGC}+\widehat{IGH}=\widehat{IGM}=90^o\) => IG ⊥ MG

=> MG là tiếp tuyến đường tròn tâm I

c) Kẻ đường kính AK của đường tròn (O) => \(\widehat{ACK}=90^o\) (góc nội tiếp chắn nửa đường tròn) => ΔACK vuông tại C => \(\widehat{KAC}=90^o-\widehat{AKC}\)

ΔABE vuông tại E => \(\widehat{EAB}=90^o-\widehat{ABE}\) hay \(\widehat{DAB}=90^o-\widehat{ABC}\) 

Xét đường tròn (O) có \(\widehat{ABC}=\widehat{AKC}\) (cùng chắn \(\stackrel\frown{AC}\))

=> \(90^o-\widehat{AKC}=90^o-\widehat{ABC}\) => \(\widehat{DAB}=\widehat{KAC}\) => \(\stackrel\frown{BD}=\stackrel\frown{KC}\) (góc nội tiếp bằng nhau chắn các cung bằng nhau)

=> BD = KC (hai cung bằng nhau căng hai dây bằng nhau)

Xét ΔAKC vuông tại C, theo định lý Pytago có: AC2 + KC2 = AK2

Xét ΔAEC vuông tại E, theo định lý Pytago có: EA2 + EC2 = AC

ΔBED vuông tại E, theo định lý Pytago có: EB2 + ED2 = BD2

Mà BD = KC (cmt) => BD2 = KC2 => EB2 + ED2 = KC

=> EA2 + EB2 + EC2 + ED2 = AC2 + KC2 = AK2 = (2R)2 = 4R2

Đề sai rồi bạn

(O) cắt CA tại C là sao? ΔABC nhọn mà bạn!

7 tháng 6 2021

a) đề khúc sau là \(MK.MF=MB.MC\)

Ta có: \(\angle BKC=\angle BFC=90\Rightarrow BKFC\) nội tiếp

\(\Rightarrow\angle MKB=\angle MCF\)

Xét \(\Delta MKB\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCF\\\angle CMFchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKB\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MF}\Rightarrow MK.MF=MB.MC\)

b) Xét \(\Delta MNB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MNB=\angle MCA\left(ANBCnt\right)\\\angle CMAchung\end{matrix}\right.\)

\(\Rightarrow\Delta MNB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MN}{MC}=\dfrac{MB}{MA}\Rightarrow MN.MA=MB.MC\)

mà \(MK.MF=MB.MC\Rightarrow MK.MF=MA.MN\Rightarrow\dfrac{MK}{MA}=\dfrac{MN}{MF}\)

Xét \(\Delta MKN\) và \(\Delta MAF:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{MK}{MA}=\dfrac{MN}{MF}\\\angle AMFchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKN\sim\Delta MAF\left(c-g-c\right)\Rightarrow\angle MNK=\angle MFA\)

\(\Rightarrow ANKF\) nội tiếp \(\Rightarrow\angle AKN=\angle AFN\)undefined

7 tháng 6 2021

thank nha :33333