Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AD , BE , CF là các phân giác của tam giác ABC nên ta có :
FA/FB = CA/CB
DB/DC = AB/AC
EC/EA = BC/BA
=> FA/FB . DB/DC . EC/EA = CA.AB.BC/CB.AC.BA = 1
=> ĐPCM
Tk mk nha
a) Ta có: \(\dfrac{DB}{DC}\cdot\dfrac{EC}{EA}\cdot\dfrac{FA}{FB}\)
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)
=1
DB/DC*EC/EA*FA/FB
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)
DB/DC=AB/AC
EC/EA=BC/BA
FA/FB=CA/CB
=>DB/DC*EC/EA*FA/FB=(AB*BC*AC)/(AC*BA*CB)=1
Xét ΔABC có AD là đường phân giác
nên DB/DC=AB/AC
Xét ΔABC có
BE là đường phân giác
nên EA/EC=AB/BC
Xét ΔABC có CF là đường phân giác
nên FA/FB=AC/BC
\(\dfrac{DB}{DC}\cdot\dfrac{EC}{EA}\cdot\dfrac{FA}{FB}=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}=1\)
áp dụng định lý phân giác ta có:\(\left\{{}\begin{matrix}\dfrac{DB}{DC}=\dfrac{AB}{AC}\\\dfrac{EC}{EA}=\dfrac{BC}{AB}\\\dfrac{FA}{FB}=\dfrac{AC}{BC}\end{matrix}\right.\)
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)
Lời giải:
Theo tính chất đường phân giác ta có:
$\frac{DB}{DC}=\frac{AB}{AC}$
$\frac{EC}{EA}=\frac{BC}{BA}$
$\frac{FA}{FB}=\frac{AC}{BC}$
Nhân theo vế:
$\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AB}{AC}.\frac{BC}{BA}.\frac{AC}{BC}=1$