Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)CHO~AKO(AOK=COH;AKO=CHO=90);AKO~AHB(A chung;AKO=AHB=90)
=>CHO~AHB
b)ODH~OHC(O chung;OHD=OCH)=>OH2=OC.OD
c)Suy ra trực tiếp từ đ/l Thales
d)Do ABC cân tại A nên H cũng là trung điểm hay DH là đường trung bình của CBK=>CD=KD
SBKHD=DK.(BK+DH)/2=DK.3DH/2
SHDC=DC.DH/2
=>SBKHD=3.SHDC
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
Sửa đề: ΔABC vuông tại A
a) Xét ΔDAB vuông tại D và ΔACB vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔDAB\(\sim\)ΔACB(g-g)
b) Xét ΔABC có
BE là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\)(Định lí đường phân giác của tam giác)(1)
Ta có: ΔDAB\(\sim\)ΔACB(cmt)
nên \(\dfrac{AB}{BC}=\dfrac{BD}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(2)
Từ (1) và (2) suy ra \(\dfrac{AE}{EC}=\dfrac{BD}{AB}\)
hay \(AE\cdot AB=BD\cdot EC\)(đpcm)
a:Xet ΔHBA và ΔABC có
góc HBA chung
góc BHA=góc BAC
=>ΔHBA đồng dạng với ΔABC
b: góc CAB+góc CKB=90+90=180 độ
=>CABK nội tiếp
=>góc AKB=góc ACB
a: Xet ΔHEA vuông tại E và ΔHIB vuông tại I có
góc EHA=góc IHB
=>ΔHEA đồng dạng với ΔHIB
b: Xét ΔMIB vuông tại M và ΔICH vuông tại I có
góc MIB=góc ICH
=>ΔMIB đồng dạng với ΔICH
=>IB/CH=IM/IC
=>IB*IC=CH*IM