K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

a)CHO~AKO(AOK=COH;AKO=CHO=90);AKO~AHB(A chung;AKO=AHB=90)

=>CHO~AHB

b)ODH~OHC(O chung;OHD=OCH)=>OH2=OC.OD

c)Suy ra trực tiếp từ đ/l Thales

d)Do ABC cân tại A nên H cũng là trung điểm hay DH là đường trung bình của CBK=>CD=KD

SBKHD=DK.(BK+DH)/2=DK.3DH/2

SHDC=DC.DH/2

=>SBKHD=3.SHDC

4 tháng 5 2019

Câu c suy ra trực tiếp từ đ/l talet là sao z

1 tháng 4 2021

a) Xét tam giác AHD và tam giác CKD có:

AHD=CKD=90

\(D_1=D_2\) (2 góc đối đỉnh)

=> tam giác AHD đồng dạng tam giác CKD (g-g)

=> đpcm

1 tháng 4 2021

b) Xét tam giác AHB và tam giác CKB có

AHB=BKC=90

ABD=DBC ( BD là tia phân giác ABC)

=> Tam giác AHB đồng dạng CKB (g-g)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

Sửa đề: ΔABC vuông tại A

a) Xét ΔDAB vuông tại D và ΔACB vuông tại A có 

\(\widehat{ABC}\) chung

Do đó: ΔDAB\(\sim\)ΔACB(g-g)

b) Xét ΔABC có

BE là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\)(Định lí đường phân giác của tam giác)(1)

Ta có: ΔDAB\(\sim\)ΔACB(cmt)

nên \(\dfrac{AB}{BC}=\dfrac{BD}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(2)

Từ (1) và (2) suy ra \(\dfrac{AE}{EC}=\dfrac{BD}{AB}\)

hay \(AE\cdot AB=BD\cdot EC\)(đpcm)

 

a:Xet ΔHBA và ΔABC có

góc HBA chung

góc BHA=góc BAC

=>ΔHBA đồng dạng với ΔABC

b: góc CAB+góc CKB=90+90=180 độ

=>CABK nội tiếp

=>góc AKB=góc ACB

 

a: Xet ΔHEA vuông tại E và ΔHIB vuông tại I có

góc EHA=góc IHB

=>ΔHEA đồng dạng với ΔHIB

b: Xét ΔMIB vuông tại M và ΔICH vuông tại I có

góc MIB=góc ICH

=>ΔMIB đồng dạng với ΔICH

=>IB/CH=IM/IC

=>IB*IC=CH*IM