Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điểm A di động trên cung tròn của đường tròn tâm B và A; B; C không thẳng hàng
a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900
Vậy I thuộc đường tròn đường kính OC cố định (đpcm).
b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB
Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).
c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC
Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)
Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.
d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.
Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)
Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).
1: I là tâm đường tròn nội tiếp
QB=QC
=>QB=QI
=>ΔQBI cân tạiQ
2: Xet ΔAMI và ΔANI có
góc AMI=góc ANI
góc MAI=góc NAI
AI chung
=>ΔAMI=ΔANI
=>góc AMN=góc ANM=90 độ-1/2*góc ABC và AM=AN
=>góc EMB=góc NMB=90 độ+1/2*gócc ABC
góc IBC=1/2*góc ABC
góc ICB=góc ACB/
=>góc EIB+góc EMB=180 độ
=>ĐPCM