Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AHchung
Do đo: ΔAHB=ΔAHC
b: HB=HC=BC/2=3cm
=>AH=4cm
c: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
Suy ra BM=CN
Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đo: ΔNBC=ΔMCB
Suy ra: góc KBC=góc KCB
=>ΔKBC cân tại K
=>KB=KC
=>KN=KM
hay ΔKNM cân tại K
d: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
Tự vẽ hình nhé ?
a) Xét ∆ABM và ∆KBM có :
Góc BAM = BKM (do AB ⊥ AC, MK ⊥ BC (GT))
BM chung
Góc ABM = KBM (do BM là tia pg của góc ABC (GT))
=> ∆ABM = ∆KBM (ch - gn) (1)
=> Góc AMB = KMB (2 góc tương ứng)
Mà MB nằm giữa MA và MK
=> MB là tia pg của góc AMK (đpcm)
b) Từ (1) => AM = KM (2 cạnh tương ứng) (2)
Ta có : Góc BAM (=90o) + NAM = 180o (kề bù)
Mà góc BKM (=90o) + CKM = 180o (kề bù)
=> Góc NAM = CKM (3)
Xét ∆ANM và ∆KCM có :
Góc AMN = CMK (đối đỉnh)
AM = KM (Theo (2))
Góc NAM = CKM (Theo (3))
=> ∆ANM = ∆KCM (g.c.g)
=> MN = MC (2 cạnh tương ứng)
Vậy...
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:
BC chung.
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).
=> BN = CM (2 cạnh tương ứng).
Ta có: AB = AN + BN; AC = AM + CM.
Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).
=> AM = AN.
b) Xét tam giác AMN: AM = AN (cmt).
=> Tam giác AMN cân tại A.
c) Xét tam giác ABC:
BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).
I là giao điểm của BM và CN (gt).
=> I là trực tâm.
=> AI là đường cao.
Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.
=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).
Câu a
Xét tam giác vuông AB0 và tam giác vuông ACO
AB=AC( gt )
AO cạnh chung
=> Tam giác ABO = Tam giác ACO (ch-cgv)
=>OB=OC( 2 cạnh tương ứng )
Xét tam giác vuông MBO và tam giác vuông NCO
MB=NC ( gt)
OB=OC (cmt)
=>Tam giác MBO = Tam giác NCO( 2 cgv )
=>OM=ON
=>tam giác NOM cân tại 0
cTa có tam giác NOM cân tại O
Lại có : HOB^=HOC^ (cn câu a)
=.HOM^+MOB^=HON^+NOC^
Mà MOB^=NOC^ (cm câu a)
=>HOM^=HON^
Xét tam giác MEO và tam giác NEO
EO cạnh chung
EOM^=EON^ (cmt)
OM=ON ( cm câu a)
=>Tam giác EOM=tam giác EON ( c-g-c )
=> OEN^=OEM^
Mà OEN^+OEM^=180* (góc bẹt)
=>OEM^=OEN^=180*/2=90* ( đpcm )
1:
a: Xét ΔABD vuông tại D và ΔCAE vuông tại E có
AB=CA
góc ABD=góc CAE
=>ΔABD=ΔCAE
b: ΔABD=ΔCAE
=>BD=AE: AD=CE
=>BD-CE=BD-AD=DE
a: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>BA=BN; MA=MN
=>BM là trung trực của AN
=>BM vuông góc AN
b: Xét ΔMBC có
MN vừa là đường cao, vừa là trung tuyến
nên ΔMBC cân tại M
=>góc ACB=góc MBC=1/2gócABC
=>góc ABC=60 độ; góc ACB=30 độ
(Bạn tự vẽ hình giùm)
a/ \(\Delta AMB\)và \(\Delta ANC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
MB = NC (gt)
=> \(\Delta AMB\)= \(\Delta ANC\)(c - g - c) => AM = AN (hai cạnh tương ứng) (đpcm)
\(\Delta AHB\)và \(\Delta AHC\)có: AB = AC (\(\Delta ABC\)cân tại A)
BH = HC (H là trung điểm của BC)
Cạnh AH chung
=> \(\Delta AHB\)= \(\Delta AHC\)(c - c - c) => \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}\)= 180o (kề bù)
=> \(2\widehat{AHB}=180^o\)
=> \(\widehat{AHB}=90^o\)
=> \(AH\perp BC\)(đpcm)
b/ \(\Delta AHM\)vuông và \(\Delta AHN\)vuông có: AM = AN (cm câu a)
Cạnh AH chung
=> \(\Delta AHM\)vuông = \(\Delta AHN\)vuông (cạnh huyền - cạnh góc vuông) => HM = HN (hai cạnh tương ứng) => H là trung điểm MN
Ta có HB = HC = \(\frac{BC}{2}=\frac{6}{2}\)= 3 (cm)
và \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lý Pitago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 32
=> AH2 = 25 - 9
=> AH2 = 16
=> AH = \(\sqrt{16}\)(vì AH > 0)
=> AH = 4 (cm)
Ta lại có BM = MN = NC (gt)
Mà BM + MN + NC = BC
=> 3BM = 6
=> BM = MN = NC = 2
=> HM = HN = 1
và \(\Delta AHM\)vuông tại H => AM2 = AH2 + MH2 (định lý Pitago)
=> AM2 = 42 + 12
=> AM2 = 16 + 1
=> AM2 = 17
=> AM = \(\sqrt{17}\)(cm) (vì AM > 0)