Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ nói với cậu chỗ tin nhắn rồi .... nếu không hiểu thì báo tớ,,,,, tớ ns tiếp cho
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Góc BEC=góc BFC=90 độ
=>BCEF LÀ TỨ GIÁC NỘI TIẾP
=>Góc AFE=gócC (1)
Tam giác BNC đồng dạng với tam giác BMC(g.c.g)
=>Góc BNC=góc BMC
=>BCMN là tứ giác nội tiếp
=>Góc ANM=góc AMN=góc C (2)
Từ 1 và 2
Có EF song song với MN và góc ANM=góc AMN
=>EMNF là hình thang cân
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Câu 1:
Xét ΔABC có
BM là đường phân giác ứng với cạnh AC
nên \(\dfrac{AM}{MC}=\dfrac{AB}{BC}\left(1\right)\)
Xét ΔABC có
CN là đường phân giác ứng với cạnh AB
nên \(\dfrac{AN}{NB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)
hay MN//BC
Xét tứ giác BNMC có MN//BC
nên BNMC là hình thang
mà \(\widehat{NBC}=\widehat{MCB}\)
nên BNMC là hình thang cân
Có: BE là tia pg của ^B(gt)
CF là tia og của C(gt)
Mà ^B=^C
=> ^ABE=^CBE=^ACF=^BCF
b) Xét ΔABE và ΔACF có:
^A : góc chung
AB=AC(gt)
^ABE=^ACF(cmt)
=>ΔABE=ΔACF(g..c.g)
=> AE=AF
=>ΔAEF cân tại A
=> \(\widehat{AFE\:}=\frac{180-\widehat{A}}{2}\) (1)
Có: ΔABC cân tại A(gt)
=> \(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra:
^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị
=>FE//BC
Mà ^B=^C(gt)
=> tứ giác BFEC là ht cân
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC