K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(1)

Xét ΔABC có 

CE là đường phân giác ứng với cạnh AB(gt

nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\left(2\right)\)

Ta có: ΔABC cân tại A

nên \(AB=AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)

hay ED//BC

b: Xét tứ giác EDCB có ED//BC

nên EDCB là hình thang

mà \(\widehat{EBC}=\widehat{DCB}\)

nên EDCB là hình thang cân

Xét ΔDEC có \(\widehat{DEC}=\widehat{DCE}\left(=\widehat{ECB}\right)\)

nên ΔDEC cân tại D

Suy ra: DE=DC

mà DC=EB

nên DE=DC=EB

31 tháng 10 2016

mi sao ngu thế! middusng là ngu thật

28 tháng 7 2017

đúng là ngu thật dễ thế mà không ra

22 tháng 7 2017

ABCED

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

Bài b ko biết hi hi k mình ra

  
22 tháng 7 2017

Tiếp câu b .

Có : \(\Delta ABC\) cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)         (1)

Theo tổng 3 góc trong 1 tam giác :

Với \(\Delta ABC\) => \(\widehat{ABC}+\widehat{ACB}+\widehat{A}=180^0\)

=> \(\widehat{ABC}+\widehat{ACB}=130^0\)

Lại có (1) 

=> \(\widehat{ABC}=\widehat{ACB}=\frac{130^0}{2}=65^0\)

Vì tứ giác là hình thang cân (chắc cũng biết tứ giác nào nhỉ :v )

=> ED // BC

=> \(\widehat{DEB}+\widehat{EBC}=180^0\)

=> \(\widehat{DEB}=180^0-65^0=115^0\)

Tương tự với góc \(\widehat{EDC}\)

23 tháng 10 2021

a: Xét ΔABC có 

BD là đường phân giác

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{AC}{BC}\left(1\right)\)

Xét ΔACB có

CE là đường phân giác

nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)

hay ED//BC

Xét tứ giác BEDC có ED//BC

nên BEDC là hình thang

mà \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

7 tháng 7 2016

A B C E D

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

30 tháng 7 2016


 

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

14 tháng 9 2016

A B C E D

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

14 tháng 9 2016

Bạn tự vẽ hình nha ==''

ABD = DBC = ABC/2 (BD là tia phân giác của ABC)

ACE = ECB = ACB/2 (CE là tia phân giác của ACB)

mà ABC = ACB (tam giác ABC cân tại A)

=> ABD = ACE

Xét tam giác ABD và tam giác ACE có:

BAC là góc chung

AB = AC

ABD = ACE (chứng minh trên)

=> Tam giác ABD = Tam giác ACE (g.c.g)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE cân tại A

=> AED = 900 - EAD/2

mà ABC = 900 - BAC/2 (tam giác ABC cân tại A)

=> AED = ABC

mà 2 góc này ở vị trí đồng vị

=> ED // BC

=> BEDC là hình thang

mà ABC = ACB (tam giác ABC cân tại A)

=> BEDC là hình thang cân

ED // BC

=> EDB = DBC (2 góc so le trong)

mà DBC = ABD (BD là tia phân giác của ABC)

=> EDB = ABD

=> Tam giác EBD cân tại E

=> EB = ED

=> BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

21 tháng 6 2019

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

- Chứng minh tứ giác BCDE là hình thang cân:

+ ΔABC cân tại A Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

BD là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

CE là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Xét ΔAEC và ΔADB có:

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔAEC = ΔADB

⇒ AE = AD

Vậy tam giác ABC cân tại A có AE = AD

Theo kết quả bài 15a) suy ra BCDE là hình thang cân.

- Chứng minh ED = EB.

ED // BC ⇒ Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc so le trong)

Mà Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDB cân tại E ⇒ ED = EB.

Vậy ta có EBCD là hình thang cân có đáy nhỏ bằng cạnh bên.

27 tháng 7 2023

a

Từ giả thiết có: ΔABC cân tại A, BD và CE là phân giác.

=> BD và CE là 2 đường trung tuyến hay ED là đường trung bình của ΔABC.

=> BD//CE (1)

Xét ΔBDA và ΔCEA có:

\(\widehat{A}\) chung

AE = AD (gt)

AB = AC (gt)

=> ΔBDA = ΔCEA (c.g.c)

=> `EC=DB` (2)

Từ (1), (2) => BEDC là hình thang cân.

b

ΔABC cân => \(\widehat{B}=\widehat{C}=50^o\)

Tổng 4 góc của tứ giác là `360^o` mà `BEDC` là hình thang cân.

=> \(\widehat{E}=\widehat{D}=\dfrac{360^o-100^o}{2}=130^o\)