Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta MBH\) vuông tại H và \(\Delta MCK\) vuông tại K:
BM = CM (M là trung điểm BC).
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\Delta MBH=\Delta MCK\) (cạnh huyền - góc nhọn).
c,
- Xét Δ AHM và Δ AKM có:
+ Góc AHM = góc AKM = 900 (gt)
+ AM là cạnh chung
+ Góc HAM = góc KAM (AM là phân giác)
=> ΔAHM = Δ AKM (cạnh huyền - góc nhọn)
=>AH = AK (hai cạnh tương ứng )
=> Δ AHK cân tại A (gt)
=> +) Góc AHK = (180 - góc BAC) / 2
+) Góc ACB = (180 - góc BAC) / 2
=> Góc AHK = góc ACB
mà hai góc này ở vị trí đồng vị
=> HK // BC (đpcm)
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
a) Xét ΔMBH vuông tại H và ΔMCK vuông tại K có
MB=MC(M là trung điểm của BC)
\(\widehat{HBM}=\widehat{KCM}\)(ΔABC cân tại A)
Do đó: ΔMBH=ΔMCK(cạnh huyền-góc nhọn)
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
a)Ta có: tam giác ABC là tam giác cân
\(=>AB=AC\)
Mà \(AB=4cm\)
=>>AC=4cm
b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)
c) Xét tam giác ABM và tgiác ACM có
AB=AC(cmt)
AM: chung
==>>tgiác ABM=tgiác ACM( ch-cgv)
d) Ta có: tam giác ABM=tgiác ACM(cmt)
=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)
Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)
\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)
=> AMvuông góc vs BC
e) Xét tgiác BMH và tgiác CMK có :
BM=CM( 2 cạnh tương ứng , cmt(a))
\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)
==>>>tgiác BMH=tgiác CMK(ch-gn)
=>MH=MK( 2 cạnh tương ứng)
Sửa đề: M là trung điểm của BC
a) Sửa đề: ΔHBM=ΔKCM
Xét ΔHBM vuông tại H và ΔKCM vuông tại K có
MB=MC(M là trung điểm của BC)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔHBM=ΔKCM(cạnh huyền-góc nhọn)