Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
ˆABD=ˆACE
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE và ˆD=ˆE
Xét ΔHBD vuông tại H và ΔKEC vuông tại K có
BD=CE
ˆD=ˆE
Do đó: ΔHBD=ΔKCE
Suy ra: BH=CK
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
ˆHAB=ˆKAC
Do đó: ΔABH=ΔACK
còn c chờ tý
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE
=>BC//HK
a: Xét ΔABD và ΔACE có
AB=AC
ˆABD=ACE^
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE và ˆD=ˆED^=E^
Xét ΔHBD vuông tại H và ΔKEC vuông tại K có
BD=CE
ˆD=E^
Do đó: ΔHBD=ΔKCE
Suy ra: BH=CK
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
ˆHAB=KAC^
Do dó: ΔABH=ΔACK
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔABC có AH/AD=AK/AE
nên KH//DE
=>KH//CB
a,b: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE và góc D=góc E; góc DAB=góc EAC
Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Bạn vẽ hình giúp mình nghen
a. Kẻ AI vuông góc với BC, ta có ABC là tam giác cân tại A nên: AI vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow BI=IC\)
Mà DI=DB+BI và EI=EC+CI và BD=EC \(\Rightarrow DI=EI\)
Suy ra AI cũng là đường cao cũng là đường trung tuyến của tam giác AED
\(\Rightarrow\)Tam giác ADE cân tại A
b. Xét \(\Delta ABD\) và \(\Delta ACE\) có: \(\left\{{}\begin{matrix}AB=AC\\DB=EC\\AD=AE\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta ABD\) = \(\Delta ACE\) (c-c-c)
\(\Rightarrow\widehat{DAB}=\widehat{EAC}\)
Xét \(\Delta AHB\) vuông tại H và \(\Delta AKC\) vuông tại K có: \(\left\{{}\begin{matrix}AB=AC\\\widehat{DAB}=\widehat{EAC}\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta AHB\)=\(\Delta AKC\) (dpcm)
\(\Rightarrow AH=AK\)
Xét \(\Delta AHO\) vuông tại H và \(\Delta AKO\) vuông tại K có: \(\left\{{}\begin{matrix}AH=AK\\AOchung\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta AHO\) = \(\Delta AKO\) (dpcm)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔAHB=ΔAKC
Suy ra: \(\widehat{AHB}=\widehat{AKC}\)
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔBHD=ΔCKE
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
c: Xét ΔADE có
AH/AD=AK/AE
nên HK//DE
hay HK//BC
a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE
=> ^ABD = ^ACE
TG ABD = TG ACE (c.g.c)
=> ABD=ACE => TG ADE cân(đpcm)
b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)
=> BH=CK (đpcm)
=> DH=KE
* Ta có: AD = AE (vì TG ADE cân)
DH=KE(CMT)
mà AD - DH = AH
AE - KE = AK
=> AH = AK
và DH=KE ( CMT)
Do đó: HK là đường trung bình của TG ADE
=> HK // DE
c, ý b là BOC?
^HBD=^KCE (TG HBD= TG KCE )
=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)
=> TG OBC cân
*
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
DB=EC
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHDB=ΔKEC
Suy ra: BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
c: Xét ΔADE có
AH/AD=AK/AE
Do đó: HK//DE
hay HK//BC
giúp mk câu c ik
pls.