Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\Delta ABC\)vuông cân tại A \(\Rightarrow\)\(\widehat{ACB}=45^o\)
Mà AE = AD ; \(\widehat{EAD}=90^o\)\(\Rightarrow\)\(\Delta AED\)vuông cân tại A \(\Rightarrow\)\(\widehat{DEC}=45^o\)
\(\Rightarrow\)\(\widehat{ACB}+\widehat{DEC}=90^o\)\(\Rightarrow\)\(ED\perp BC\)
\(\Delta EBC\)có BA và ED là đường cao \(\Rightarrow\) D là trực tâm của \(\Delta EBC\)
\(\Rightarrow\)CD \(\perp\)BE
a) Có : \(\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ACE}=180^o\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
-Xét tam giác ABD và ACE có :
AB=AC (tam giác ABC cân tại A)
BD=CE(đều bằng AB)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
=> Tam giác ABD=ACE(c.g.c)
=> AD=AE
=> Tam giác ADE cân tại A(đccm)
b) Tam giác ABC cân tại A có : \(\widehat{BAC}=40^o\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-40^o}{2}=70^o\)
- Có : \(\widehat{ABC}+\widehat{ABD}=180^o\)
\(\Rightarrow70^o+\widehat{ABD}=180^o\)
\(\Rightarrow\widehat{ABD}=110^o\)
- Xét tam giác ABD cân tại B(BD=AB) có :
\(\widehat{ABD}+\widehat{BAD}+\widehat{ ADB}=180^o\)
\(\Rightarrow110^o+\widehat{BAD}+\widehat{ADB}=180^o\)
\(\Rightarrow\widehat{BAD}=\widehat{BDA}=\frac{180^o-110^o}{2}=35^o\)
- Tương tự, ta có : \(\widehat{AEC}=\widehat{CAE}=35^o\)
- Có : \(\widehat{DAE}=\widehat{DAB} +\widehat{CAE}+\widehat{BAC}=35^o+35^o+40^o=110^o\)
Vậy : \(\widehat{D}=\widehat{E}=35^o,\widehat{DAE}=110^o\)
c) Tam giác ABD cân tại B(AB=BD) có \(BH\perp DA\)
=> HD=HA(t/c đg TT,PG,cao,.. của tam giác cân)
Tương tự có AK=KE
Mà : AD=AE(tam giác ADE cân tại A)
=> AH=AK
-Xét tam giác AHO và AKO, có :
AH=AK(cmt)
\(\widehat{AHO}=\widehat{AKO}=90^o\)
AO-cạnh chung
=> Tam giác AHO=AKO(cạnh huyền-cạnh góc vuông)
=> HO=OK(đccm)
d) Do tam giác AHO=AKO(cmt)
=> \(\widehat{HAO}=\widehat{KAO}\)
\(\Rightarrow\widehat{HAB}+\widehat{BAO}=\widehat{KAC}+\widehat{CAO}\)
Mà : \(\widehat{HAB}=\widehat{KAC}=35^o\left(cmt\right)\)
Mà :\(\widehat{BAO}+\widehat{CAO}=\widehat{BAC}\)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}=\frac{\widehat{BAC}}{2}=\frac{40}{2}=20^o\)
- Gọi giao điểm của AO và BC là I
Xét tam giác AIB có : \(\widehat{BAI}+\widehat{ABI}+\widehat{AIB}=180^o\)
\(\Rightarrow20^o+70^o+\widehat{AIB}=180^o\)
\(\Rightarrow90^o+\widehat{AIB}=180^o\)
\(\Rightarrow\widehat{AIB}=90^o\)
\(\Rightarrow AI\perp BC\left(đccm\right)\)
#H
c: Xét tứ giác BHDM có
A là trung điểm chung của BD và HM
=>BHDM là hình bình hành
=>BH//DM
ta có:BH//DM
H\(\in\)BC
Do đó: DM//BC
d: Ta có: ΔCBD cân tại C
mà CA là đường cao
nên CA là phân giác của góc BCD
Xét ΔCNA vuông tại N và ΔCHA vuông tại H có
CA chung
\(\widehat{NCA}=\widehat{HCA}\)
Do đó: ΔCNA=ΔCHA
=>NA=AH
mà AH=1/2HM
nên NA=1/2HM
Xét ΔNHM có
NA là đường trung tuyến
\(NA=\dfrac{1}{2}HM\)
Do đó: ΔNHM vuông tại N
gọi K là giao của ED và BC
ΔAED vuông tại A có AD=AE
nên ΔAED vuông cân tại A
góc KCE+góc KEC=45+45=90 độ
=>ED vuông góc BC