Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xin lỗi bạn , mình mới học lớp 5 thôi nên cũng không biết gì ...
~~~ Chúc bạn học giỏi ~~~
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>AH=AK
Xét ΔADE có AH/AD=AK/AE
nên HK//DE
c:
góc HBD+góc D=90 độ
góc KCE+góc E=90 độ
mà góc D=góc E
nên góc HBD=góc KCE
góc MBC=góc HBD
góc MCB=góc KCE
mà góc HBD=góc KCE
nên góc MBC=góc MCB
=>ΔMBC cân tại M
Từ B kẻ BH // AC
Ta có: AB = BD, BH // AC
=> BH là đường trung bình của \(\Delta ADK\)
=> \(BH=\dfrac{1}{2}AK\) (tính chất đường trung bình của tam giác)
Xét \(\Delta BHM\) và \(\Delta CKM\) có:
\(\widehat{KMC}=\widehat{BHM}\) (2 góc đối đỉnh)
CM = MB (M trung điểm CB)
\(\widehat{MBH}=\widehat{CKM}\) (KC // BH)
=> \(\Delta BHM=\Delta CKM\left(g.c.g\right)\)
=> KC = BH (2 cạnh tương ứng)
mà \(BH=\dfrac{1}{2}AK\) (cmt)
=> \(KC=\dfrac{1}{2}AK\)
\(\Rightarrow AK=2KC\left(đpcm\right)\)
Từ B kẻ BH // AC
Ta có: AB = BD, BH // AC
=> BH là đường trung bình của \(\Delta ADK\)
=>BH=\(\dfrac{1}{2}AK\)(tính chất đường trung bình của tam giác)
Xét \(\Delta BHM\)và \(\Delta CKM\) có :
\(\widehat{KMC}=\widehat{BMH}\) ( hai góc đối đỉnh )
CM=MB (M la ftrung điểm của CB)
\(\widehat{MBH}=\widehat{CKM}\) ( KC//BH )
=>\(\widehat{BHM}=\widehat{CKM}\)
=>KC = BH
mà BH=1/2 AK
=>\(KC=\dfrac{1}{2}AK\)
=>AK=2KC
=> đcpm
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}