K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên AH là đường trung tuyến ứng với cạnh BC

Ta có: AB=AC

nên A nằm trên đường trung trực của BC\(\left(1\right)\)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC\(\left(2\right)\)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(3)

Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng

\(\Leftrightarrow A,O,H,D\) thẳng hàng

hay AD là đường kính của \(\left(O\right)\)

4 tháng 9 2015

a/ vì (o) ngoại tiếp tam giác ABC => o là giao điểm 3 đường cao 

mà tam giác ABC cân tại A => đường cao AH đồng thời là trung trực của BC

=>O thuộc AH

lại có AH giao (o) tại D => AD là đường kính

26 tháng 3 2016

bạn có thể cho mình xem hình không

a) Ta có: ΔABC cân tại A(gt)

mà AH là đường cao ứng với cạnh đáy BC(gt)

nên H là trung điểm của BC

Ta có: AB=AC(ΔABC cân tại A

nên A nằm trên đường trung trực của BC\(\left(1\right)\)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC\(\left(2\right)\)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng

hay A,O,H,D thẳng hàng

hay AD là đường kính của \(\left(O\right)\)

Xét \(\left(O\right)\) có \(\widehat{ACD}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACD}=90^0\)

31 tháng 7 2016

c) HC=1/2*BC=12

=>AH=căn(20^2-12^2)=16

ta có Sin(BAO)=12/20=>BAO=36.86989765

=>AOB=180-36.86989765*2=106.2602047

Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)

<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2

=>OA=12.5

31 tháng 7 2016

a) ta có DOC=cung DC

Vì DOC là góc ở tâm và DAC là góc chắn cung DC

=>DOC=2*AOC (1)

mà tam giác AOC cân =>AOC=180-2/AOC (2)

từ (1);(2) ta dc DOC+AOC=180

b)góc ACD là góc nội tiếp chắn nữa đường tròn

=>ACD=90 độ

c) đợi xí

23 tháng 11 2023

loading... a) Ta có:

OB = OC (bán kính)

⇒ O nằm trên đường trung trực của BC (1)

Do ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC (2)

Từ (1) và (2) suy ra O ∈ AH

⇒ O ∈ AD

Vậy AD là đường kính của (O)

b) Sửa đề: Tính độ dài các đường cao AH, BK của ∆ABC

Do AH là đường trung trực của BC (cmt)

⇒ H là trung điểm của BC

⇒ CH = BC : 2

= 12 : 2

= 6 (cm)

∆AHC vuông tại H

⇒ AC² = AH² + CH² (Pytago)

⇒ AH² = AC² - CH²

= 10² - 6²

= 64

⇒ AH = 8 (cm)

⇒ sinACH = AH/AC

= 4/5

⇒ ACH ≈ 53⁰

⇒ BCK ≈ 53⁰

∆BCK vuông tại K

⇒ sinBCK = BK/BC

⇒ BK = BC.sinBCK

= 10.sin53⁰

≈ 8 (cm)

8 tháng 7 2018

H B C O A

a, Tam giác ABC cân tại A nên AH là đường trung trực của BC. Do đó AD là đường trung trực của BC. Vì O nằm trên đường trung trực của BC nên O nằm trên AD. Vậy AD là đường kính của đường tròn (O).

b, Tam giác ACD nội tiếp đường tròn đường kính AD nên ∠ACD = 90o

c, Ta có BH = HC = BC/2 = 12(cm)

Tam giác AHC vuông tại H nên AH2 = AC2 - HC2 = 202 - 122 = 256

=> AH = 16(cm)

AC2 = AD. AH

AD = AC2/AH = 25(cm)

Bán kính đường tròn(O) bằng 12,5cm.

12 tháng 8 2018

a, Tam giác ABC cân tại A nên AH là đường trung trực của BC. Do đó AD là đường trung trực của BC. Vì O nằm trên đường trung trực của BC nên O nằm trên AD. Vậy AD là đường kính của đường tròn (O).

b, Tam giác ACD nội tiếp đường tròn đường kính AD nên ∠ACD = 90o

c, Ta có BH = HC = BC/2 = 12(cm)

Tam giác AHC vuông tại H nên AH2 = AC2 - HC2 = 202 - 122 = 256

=> AH = 16(cm)

AC2 = AD. AH

AD = AC2/AH = 25(cm)

Bán kính 25 cm