Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác AIH và tam giác MHI có
IH là cạnh chung
H2^=I1^(MI//AC)
H1^=I2^(MH//AB)
=> tam giác AIH = tam giác MHI(g.c.g)
Giải thích các bước giải:
a.Ta có : MI//AC,MH//AB→ˆAHI=ˆMIH,ˆAIH=ˆIHMMI//AC,MH//AB→AHI^=MIH^,AIH^=IHM^
→ΔAIH=ΔMHI(g.c.g)→ΔAIH=ΔMHI(g.c.g)
b.Từ câu a →AI=MH→AI=MH
Mà HM//AB,ΔABCHM//AB,ΔABC cân tại A →ˆHMC=ˆABC=ˆACB→ΔHMC→HMC^=ABC^=ACB^→ΔHMC cân tại H
→HM=HC→AI=HC→HM=HC→AI=HC
c.Ta có : ΔABCΔABC cân tại A, MI//AC→ˆIBM=ˆACB=ˆIMBMI//AC→IBM^=ACB^=IMB^
→IB=IM→IB=IM
Do HI là trung trực của MN →IM=IN→IB=IN→IM=IN→IB=IN
d.Ta có :
IHIH là trung trưc của MN
→ˆIHD=180o−ˆIHN=180o−ˆIHM=ˆAHI+ˆMHC=ˆAHI+ˆIAH=ˆDIH→IHD^=180o−IHN^=180o−IHM^=AHI^+MHC^=AHI^+IAH^=DIH^
→DI=DH→DI=DH
→PADH=AD+DH+HA=AI+ID+DI+HA=2DI+HC+AH=2DI+AC→PADH=AD+DH+HA=AI+ID+DI+HA=2DI+HC+AH=2DI+AC
→PADH→PADH thay đổi
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
b) Xét ΔAMD và ΔCMH có
MA=MC(gt)
\(\widehat{AMD}=\widehat{CMH}\)(hai góc đối đỉnh)
MD=MH(gt)
Do đó: ΔAMD=ΔCMH(c-g-c)
Suy ra: AD=HC(Hai cạnh tương ứng)
c) Ta có: ΔAMD=ΔCMH(cmt)
nên \(\widehat{MAD}=\widehat{MCH}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//HC(Dấu hiệu nhận biết hai đường thẳng song song)
hay AD//HB
Xét tứ giác ABHD có
AD//BH(cmt)
AD=BH(=HC)
Do đó: ABHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AB//DH(Hai cạnh đối)