K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EBC}=\widehat{DCB}\)

Xét ΔDBC và ΔECB có 

\(\widehat{DBC}=\widehat{ECB}\)

 BC chung

\(\widehat{DCB}=\widehat{EBC}\)

Do đo: ΔDBC=ΔECB

b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)

nên ΔBEF cân tại E

a: Xét ΔAEB và ΔADC có

AE=AD
\(\widehat{BAE}\) chung

AB=AC

Do đó; ΔAEB=ΔADC

=>EB=DC

b: Ta có: ΔAEB=ΔADC

=>\(\widehat{ABE}=\widehat{ACD}\)

Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

=>\(\widehat{BDC}=\widehat{CEB}\)

Xét ΔKDB và ΔKEC có

\(\widehat{KDB}=\widehat{KEC}\)

DB=EC

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

c: Ta có: ΔKDB=ΔKEC

=>KB=KC

Xét ΔABK và ΔACK có

AB=AC

BK=CK

AK chung

Do đó: ΔABK=ΔACK

=>\(\widehat{BAK}=\widehat{CAK}\)

=>AK là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AK là đường phân giác

nên AK là đường cao

=>AK\(\perp\)BC

e: Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

28 tháng 2 2020

b1 : 

DE // AB

=> góc ABC  = góc DEC (đồng vị)

 góc ABC = góc ACB do tam giác ABC cân tại A (gt)

=> góc DEC = góc ACB 

=> tam giác DEC cân tại D (dh)

b2:

a, tam giác ABC => góc A + góc B  + góc C = 180 (đl)

góc A = 80; góc B  = 50

=> góc C = 50

=> góc B = góc C

=> tam giác ABC cân tại A (dh)

b, DE // BC

=> góc EDA = góc ABC (slt)

     góc DEA = góc ECB (dlt)

góc ABC = góc ACB (Câu a)

=> góc EDA = góc DEA 

=> tam giác DEA cân tại A (dh)

a) Xét ΔABC có

D∈AB(gt)

E∈AC(gt)

Do đó: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(Hệ quả của Định lí Ta lét)

\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

mà \(\dfrac{AB}{AC}=1\)(AB=AC)

nên \(\dfrac{AD}{AE}=1\)

hay AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

8 tháng 2 2022

Định Lý Py-ta-lét chứ 

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC

Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE

Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK

Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn