K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2022

tham khảo

a: Xét ΔAMB và ΔAMC có

AB=AC

ˆBAM=ˆCAMBAM^=CAM^

AM chug

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ˆEAM=ˆFAMEAM^=FAM^

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF

hay ΔAEF cân tại A

c: Ta có: ΔAEM=ΔAFM

nên ME=MF

mà AE=AF

nên AM là đường trung trực của EF

hay AM⊥EF

16 tháng 3 2022

a: Xét ΔAMB và ΔAMC có

AB=AC

ˆBAM=ˆCAMBAM^=CAM^

AM chug

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ˆEAM=ˆFAMEAM^=FAM^

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF

hay ΔAEF cân tại A

c: Ta có: ΔAEM=ΔAFM

nên ME=MF

mà AE=AF

nên AM là đường trung trực của EF

hay AM⊥EF

24 tháng 4 2017

xaet1 tam giác AEM và tam giác AFM có :

AE=AF(GT)

EAM=FAM(ABC cân tại A;AM là trung tuyến)

AM Cạnh chung

=>tam giác AEM=AFM (c.g .c )

=>ME=MF(cạnh tương ứng)

=> AEM=AFM (góc tương ứng)

b) vì AEM=AFM (theo a)

=>AEF là tam giác cân tại A(tính chất tam giác cân)

mk lm được nhiu ak

a: Xét ΔAMB và ΔAMC có

AM chung

\(\widehat{BAM}=\widehat{CAM}\)

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

=>ME=MF

=>ΔMEF cân tại M

c: ta có: ΔAEM=ΔAFM

=>AE=AF

=>A nằm trên đường trung trực của EF(1)

ta có: ME=MF

=>M nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra AM là đường trung trực của EF

=>AM\(\perp\)EF
d: Kẻ FH\(\perp\)BC

Ta có: AE+EB=AB

AF+FC=AC

mà AE=AF và AB=AC

nên EB=FC

Xét ΔEIB vuông tại I và ΔFHC vuông tại H có

EB=FC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔEIB=ΔFHC

=>EI=FH và BI=CH

Ta có: BI+IM=BM

CH+HM=CM

mà BI=CH và BM=CM

nên IM=HM

=>M là trung điểm của IH

Ta có: ΔABC cân tại A

mà AM là đường phân giác

nên AM\(\perp\)BC

=>AM//KI//FH

Xét hình thang FHIK có

M là trung điểm của HI

MA//KI//FH

Do đó: A là trung điểm của KF

24 tháng 12 2023

Cho △ABC có AB = AC, AM là phân giác của ∠BAC (M ∈ BC):

a, Chứng minh △ABM = △ACM.

b, Chứng minh M là trung điểm của BC và AM ⊥ BC.

c, Kẻ MF ⊥ AB (F ∈ AB) và ME ⊥ AC (E ∈ AC). Chứng minh EF // BC.

Giải:

a,

- Xét 2 △ABM và △ACM, có:

     AB = AC (theo giả thiết)

     ∠CAM = ∠BAM (AM là phân giác của ∠BAC)

     AM_cạnh chung

=> △ABM = △ACM (c.g.c)

b,

- Có △ABM = △ACM (chứng minh trên)

=> MC = MB (2 cạnh tương ứng)

=> M là trung điểm của BC

=> ∠AMC = ∠AMB (2 góc tương ứng)

     mà 2 ∠AMC và ∠AMB kề bù

=> ∠AMC = ∠AMB = \(\dfrac{180^o}{2}\) = 90o

<=> AM ⊥ BC

c,

- Xét 2 △AEM và △AFM, có:

     ∠AEM = ∠AFM = 90o

     AM_cạnh chung

     ∠EAM = ∠FAM (AM là phân giác của ∠EAF)

=> △AEM = △AFM (cạnh huyền - góc nhọn)

=> AE = AF (2 cạnh tương ứng)

<=> △AEF cân tại A 

=> ∠AEF = \(\dfrac{180^o-\text{∠}EAF}{2}\) (số đo của một góc ở đáy trong △AEF cân tại A) (1)

Có △ABC cân tại A (AB = AC)

=> ∠ACB = \(\dfrac{180^o-\text{∠}BAC}{2}\) (số đo của một góc ở đáy trong ΔABC cân tại A) (2)

Từ (1) và (2) suy ra ∠AEF = ∠ACB

     mà ∠AEF và ∠ACB ở vị trí đồng vị

=> EF//BC

30 tháng 4 2021

a là j ạ

 

30 tháng 4 2021

b) ta có tam giác ABC cân

=> \(\widehat{B}=\widehat{C}=180-\widehat{A}\)  (1)

mà AM là trung tuyến => AM cx là phân giác và AM cx là đường cao (t/c tam giác cân)

=>\(\widehat{A1}=\widehat{A2}\)

xét tam giác AEM và tam giác AfM

có AM chung

\(\widehat{E}=\widehat{F}\)=90o

\(\widehat{A1}=\widehat{A2}\)

=> tam giác AEM =tam giác AFM (CH-GN)

=> AE =AC (2 cạnh tương ứng)

=> tam giác AEF cân ở \(​​\widehat{A}\)

=> \(\widehat{E}=\widehat{F}=180-\widehat{A}\) (2)

từ 1 và 2 =>\(\widehat{E}=\widehat{B}\) mà 2 góc ở vt đồng vị 

=> EF // BC 

mà AM ⊥ BC 

=> EF ⊥ AM

=> AM là trung trực của EF (t/c tam giác cân)

 

24 tháng 12 2023

loading... a) Do AM là tia phân giác của ∠BAC (gt)

⇒ ∠BAM = ∠CAM

Xét ∆ABM và ∆ACM có:

AB = AC (gt)

∠BAM = ∠CAM (cmt)

AM là cạnh chung

⇒ ∆ABM = ∆ACM (c-g-c)

b) Do ∆ABM = ∆ACM (cmt)

⇒ BM = CM (hai cạnh tương ứng)

⇒ M là trung điểm của BC

Do ∆ABM = ∆ACM (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

c) Do ∠BAM = ∠CAM (cmt)

⇒ ∠EAM = ∠FAM

Xét hai tam giác vuông: ∆AME và ∆AMF có:

AM là cạnh chung

∠EAM = ∠FAM (cmt)

⇒ ∆AME = ∆AMF (cạnh huyền góc nhọn)

⇒ ME = MF (hai cạnh tương ứng)

24 tháng 12 2023

a,
Xét tam giác ABC có:
+ AB = AC (giả thuyết)
+ Góc CAM = MAB (AM là phân giác góc BAC)
+ AM chung
⇒ 2 tam giác bằng nhau (cgc) (đpcm)

b,
Ta có:
+ Tam giác AMC = Tam giác ABM (theo câu a)
⇒ CM = MB (2 cạnh tương ứng) (1)
⇒ M là trung điểm BC (đpcm)
+ Mà AM là tia phân giác góc CAB (2)
+ Góc AMC = Góc AMB (3)
Từ (1), (2), (3).
⇒ AM ⊥ BC (t/c) (đpcm)

c,
Ta có:
Tam giác ACM = Tam giác ABM (theo câu A)
⇒ Góc ACM = Góc ABM (2 góc tương ứng)
Ta có:
+ ME ⊥ AB (giả thuyết)
⇒ Tam giác MEB vuông tại E
+ MF ⊥ AC (giả thuyết)
⇒ Tam giác CFM vuông tại F
Xét tam giác CFM vuông tại F và tam giác MEB vuông tại E có:
+ Góc ACM bằng góc ABM (chứng minh trên)
+ MC = MB (theo câu b)
⇒ Hai tam giác CFM = MEB (cạnh huyền góc nhọn)
⇒ ME = MF (hai cạnh tương ứng) (đpcm)

30 tháng 11 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

6 tháng 5 2019

Bấm vô câu hỏi tương tự đi

có bài này đó

........

6 tháng 5 2019

Nhầm , bn tìm trên mạng đi

có nhiều ng giải bài này rồi

.............

6 tháng 5 2022

a) Xét AMB và AMC                                                                                                               

ta có: AB=AC ( vì ABC cân tại A  )                                                                                                 

          BM=MC ( vì AM là đường trung tuyến )                                                                             

          AM: cạnh chung                                                                                                   

Suy ra: AMB = AMC ( c.c.c )