Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 ta có :
AC=AH+HC=6+4=10cm
Vì ΔABC cân tại A nên AB=AC=10cm
Vì ΔABH vuông tại H
⇒AB\(^2\)=AH\(^2\)+BH\(^2\)
⇒10\(^2\)=6\(^2\)+BH\(^2\)
⇒BH=8cm
Vì ΔBHC vuông tại H
⇒BC\(^2\)=BH\(^2\)+CH\(^2\)
⇒BC\(^2\)=8\(^2\)+4\(^2\)
⇒BC=4\(\sqrt{5}\)cm
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
a) Chứng minh HB=HC: Xét ΔAHB và ΔAHC có: ∠AHB=∠AHC=90(độ) AH cạnh chung AB=AC(gt) ⇒ ΔAHB = ΔAHC (ch-cgv) ⇒ HB=HC (2 cạnh tương ứng)
b) Ta có: HB=HC=BC/2=6/2=3(cm) Ta có: ΔAHB vuông tại H. ⇒ AH(mũ 2)+BH(mũ 2)=AB(mũ 2) ⇒ AH(mũ 2)=AB(mũ 2)-BH(mũ 2) =4(mũ 2)-3(mũ 2)=16-9=7 ⇒ AH=√7(cm)
c) Ta có: ΔAHB = ΔAHC ⇒ ∠BAH=∠CAH Xét ΔAHD và ΔAHE có: ∠D=∠E=90(độ) AH cạnh chung ∠BAH=∠CAH (gt) ⇒ ΔAHD = ΔAHE (ch-gn) ⇒ DH=EH ⇒ ΔHDE cân tại H.
cho tam giác ABC vuông cân ở A, biết AB=6cm, AC=8cm, kẻ AH vuông góc với BC tại H. Tính AH, BH và HC
Ta có: AB = AC ( ABC cân )
Mà AC = AH + CH = 6 + 4 = 10cm
=> AB = 10 cm
Áp dụng địnhl iý pitago vào tam giác vuông AHB, có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow HB=\sqrt{AB^2-AH^2}=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
Áp dụng định lý pitago vào tam giác vuông BHC, có:
\(BC^2=BH^2+CH^2\)
\(\Rightarrow BC=\sqrt{8^2+4^2}=\sqrt{80}=4\sqrt{5}cm\)
bài 1 ta có :
Vì ΔABC cân tại A nên AB=AC=10cm
Vì ΔABH vuông tại H
Vì ΔBHC vuông tại H