Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây chỉ là hướng làm thôi, cần trình bày lại nhé ^^!
1) 2 tam giác này bằng nhau trường hợp cạnh huyền góc nhọn (bạn tự cm nhé)
2) Xét 2 tam giác ABD và ACE (bằng nhau trường hợp cạnh huyền góc nhọn - cạnh huyền là AB và AC, góc nhọn là A^ chung)
=> IBE^ = ICD^
3) Ta có: I là trọng tâm của tam giác ABC => AI là đường cao .Mà AI giao BC = H => AI _|_ BC tại H
Xét tam giác BDC và CEB có
góc E= góc D=90 độ
góc B= Góc C
BC chung
=> tam giác BDC= tam giác CEB(trường hợp cạnh huyền góc nhọn)
=>góc DBC= góc ECB( hai cạnh tương ứng)
mà góc DBC+DBE=góc EBC
góc ECB+ECD=góc BCD
lại có góc EBC=Góc BCD
=>góc DBE=góc BCD
hay góc IBE= cóc ICD
c) có BD và CE cắt nhau tại I
mà trong mộ tam giác ba đường cao đồng quy tại một điểm
=>AI là đường cao hạ từ điingr A của tam giác ABC xuống cạnh BC
=>AI vuông góc với BC
a: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đó: ΔBDC=ΔCEB
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
BD=CE
Do đó:ΔADB=ΔAEC
Suy ra: \(\widehat{IBE}=\widehat{ICD}\)
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
=>AI\(\perp\)BC tại H
vào đây nhé : kiêm tra 45' tiết 46 hình 7 dã chỉnh sửa - Giáo án-Thư viện ...
bạn bấm vào đấy nhé , bài này dài lắm :
nslide.com/giao-an/xem-giao.../kiem-tra-45-tiet-46-hinh-7-da-chinh-sua