Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)
góc ABC = góc ACB ( cân tại A)
BC chung
==> BD=CE
b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên
góc BCE = góc DBC
--> IBC cân tại I
a) Xét tam giác AEC và tam giác ADB:
+ AC = AB (Tam giác ABC cân tại A).
+ \(\widehat{A}chung.\)
+ \(\widehat{AEC}=\widehat{ADB}=90^o.\)
\(\Rightarrow\) Tam giác AEC = Tam giác ADB (cạnh huyền - góc nhọn).
\(\Rightarrow\) BD = CE (2 cạnh tương ứng).
b) Tam giác AEC = Tam giác ADB (cmt).
\(\Rightarrow\) AD = AE (2 cạnh tương ứng).
c) Xét tam giác AEI và tam giác ADI:
+ AI chung.
+ AE = AD (cmt).
+ \(\widehat{AEI}=\widehat{ADI}=90^o.\)
\(\Rightarrow\) Tam giác AEI = Tam giác ADI (canh huyền - cạnh góc vuông).
\(\Rightarrow\) IE = ID (2 cạnh tương ứng).
d) Tam giác AEI = Tam giác ADI (cmt).
\(\Rightarrow\) \(\widehat{EAI}=\widehat{DAI}\) (2 góc tương ứng).
\(\Rightarrow\) AI là phân giác \(\widehat{A}.\)
e) Xét tam giác ABC cân tại A:
AI là phân giác \(\widehat{A}\left(cmt\right).\)
\(\Rightarrow\) AI là đường cao (Tính chất tam giác cân).
\(\Rightarrow\) \(AI\perp BC.\)
Bạn tự vẽ hình nha!
a.
Ta có:
- B1 + B2 = 180
- C1 + C2 = 180
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I
b,Xét 2 tam giác vuông AEC và ADB có :
AB = AC (gt)
^A : góc chung
=> tam giác AEC =tam giác ADB ( cạnh huyền - góc nhọn)
=> AE = AD ( 2 cạnh tương ứng )
Xét 2 tam giác vuông AEK và ADK có :
AK : cạnh chung
AE = AD ( cmt)
=> tam giác AEK = tam giác ADK ( cạnh huyền - cạnh góc vuông )
=> ^EAK = ^DAK ( 2 góc tương ứng )
=> AK là tia phân giác của góc A
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi
a) Xét 2 tam giác vuông BEC và tam giác CDB có BC chung, góc ABC=góc ACB
Nên tam giác BEC = tam giác CDB
Nên BD=CE( 2 cạnh tương ứng)
b) Theo câu a ta có tam giác BEC=tam giác CDB
Nên góc ECB=góc DBC( 2 góc tương ứng
Nên tam giác BIC cân tại I
d) Ta có DC=3cm, BC=5cm.
Áp dụng định lí PI ta go ta có BD^2+ DC^2=BC^2
---> BD^2+ 9=25
---------------> BD=5cm
Mà BD= EC
Nên EC=5cm
Tính AB thì c tương tự nhé bạn
Câu a sai đề không nhỉ?
AD không thể lớn hơn AE được nhé, check lại đề.