K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của \(\widehat{BAC}\)

c: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

29 tháng 10 2023

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của \(\widehat{BAC}\)

c: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC=BC/2=3cm

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2+3^2=5^2\)

=>\(HA^2=25-9=16\)

=>HA=4(cm)

Bài 2: 

a: Xét ΔAHB và ΔAHC có 

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

DO đó; ΔAHB=ΔAHC

b: Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

c: BC=10cm nên BH=CH=5cm

=>AC=13cm

5 tháng 4 2022

giúp mik câu 1 đc ko ạ

 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(Hai cạnh tương ứng)

a) Ta xét ▵AHB và▵AHC, ta có

AH là cạnh chung

AC=AB ( vì tam giác cân tại A)

góc AHC = góc AHB là góc vuông (90 độ)

-> ▵AHB =▵AHC (cạnh huyền- cạnh góc vuông)

b) Ta có ▵AHB =▵AHC (cmt)

->HB=HC ( 2 cạnh tương ứng)

c) Ta xét ▵AKH và ▵AIH. Ta có: 

AH là cạnh chung 

góc AKH = góc AIK = 90 độ 

-> ▵AKH =▵AIH (cạnh huyền - cạnh góc vuông)

-> AK = AI (2 cạnh tương ứng) nên ▵AIK là tam giác cân và cân tại A

d) Ta áp dụng tính chất: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.

Ta có AH là cạnh chung cùng vuông góc với IK và BC

-> IK // BC

e) Ta cho giao điểm của AH và IK là O 

Ta xét ▵AKO và ▵AIO

Ta có AK=AI (cmt)

Góc AOK = góc AOI = 90 độ

-> ▵AKO = ▵AIO

-> KO = IO ( 2 cạnh tương ứng) -> AH là đường trung trực của đoạn thẳng IK

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔDMH vuông tại M và ΔDMC vuông tại M có

DM chung

MH=MC

=>ΔDMH=ΔDMC

=>góc DHC=góc DCH

=>góc DHC=góc ABH

=>DH//AB

c: Xét ΔAHC có

M là trung điểm của CH

MD//AH

=>D là trung điểm của AC

Xét ΔABC có

BD,AH là đường cao

BD cắt AH tại G

=>G là trọng tâm

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: ta có: ΔBAD=ΔBED

=>AB=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

c: ta có: \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

\(\widehat{BIH}+\widehat{IBH}=90^0\)(ΔHBI vuông tại H)

Do đó: \(\widehat{AID}+\widehat{DBC}=90^0\)

Ta có: \(\widehat{AID}+\widehat{DBC}=90^0\)

\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)

mà \(\widehat{DBC}=\widehat{ABD}\)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔADI cân tại A

 

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

góc ABE=góc DBE

=>ΔBAE=ΔBDE
b: BA=BD

EA=ED

=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ

góc HAD+góc BDA+90 độ

góc BAD=góc BDA

=>góc CAD=góc HAD

=>AD làphân giác của góc HAC

4 tháng 5 2017

tự vẽ hình nha!^^

1/a/ vì AB<AC(gt)\(\Rightarrow\)\(\widehat{B}< \widehat{C}\)(theo tính chất)

b)ta có:\(\widehat{BAH}+\widehat{AHB}+\widehat{B}=180\)độ

\(\widehat{CAH}+\widehat{AHC}+\widehat{C}=180\)độ

mà \(\widehat{B}< \widehat{C}\)(theo câu a)) và \(\widehat{AHB}=\widehat{AHC}=90\)độ

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)\(\Rightarrow HB< HC\)(tính chất)

2/a/\(Xét\Delta ABIva\Delta HBIcó:\)

góc BAI=BHI=90 độ

BỊ chung;góc B1=góc B2

Vậy \(\Delta ABI=\Delta HBI\left(ch-gn\right)\)

b/ vì IA=IH(do tgiac ABI=tgiac HBI)

Vậy tam giác AIH cân tại I

c/Vì AB=AH(do tam giác BIA= tam giác BIH)

\(\Rightarrow\)tam giác BAH cân tại B

mà BỊ là đường phân giác nên suy ra cũng là đường trung trực (theo tính chất của các đường trong tam giác cân)

\(\Rightarrow\)BI là đường trung trực của đoạn thẳng AH(đpcm)

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.