K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

tời ơi:vv AM ⊥ BC

a, Xét Δ AMB và Δ AMC, có :

\(\widehat{AMB}=\widehat{AMC}=90^o\)

AB = AC (Δ ABC cân tại A)

AM là cạnh chung

=> Δ AMB = Δ AMC (c.g.c)

b, Xét Δ AMB và Δ NMB, có :

BM là cạnh chung

MN = MA (gt)

\(\widehat{AMB}=\widehat{NMB}=90^o\)

=> Δ AMB = Δ NMB (c.g.c)

=> AB = NB

Xét Δ ABN, có : AB = NB (cmt)

=> Δ ABN cân tại B

Ta có : MA = MN (gt)

=> M là trung điểm của AN, MB là đường trung trực của AN

Mà Δ ABN cân tại B

=> BM là đường phân giác của Δ ABN

=> BM là tia phân giác của \(\widehat{ABN}\)

10 tháng 5 2022

đề sai nên sửa lại chút nhá AM ⊥ BC với lại hình thì bạn tự vẽ.

a, Xét Δ AMB và Δ AMC, có :

AB = AC (Δ ABC cân tại A)

\(\widehat{AMB}=\widehat{AMC}\) ( = 90 độ)

AM là cạnh chung

=> Δ AMB = Δ AMC (c.g.c)

b, Xét Δ AMB và Δ NMB, có :

BM là cạnh chung

\(\widehat{AMB}=\widehat{NMB}\) ( = 90 độ)

MN = MA (gt)

=> Δ AMB = Δ NMB (c.g.c)

=> AB = NB

Xét Δ ABN, có : AB = NB (cmt)

=> Δ ABN cân tại B

Ta có : MA = MN (gt)

=> M là trung điểm của AN, MB là đường trung trực của AN

Mà Δ ABN cân tại B

=> BM là đường phân giác của Δ ABN

=> BM là tia phân giác của \(\widehat{ABN}\)

21 tháng 12 2018

https://cunghocvui.com/danh-muc/toan-lop-7 Trong này có lời giải nhée

15 tháng 12 2019

Xét \(\Delta ABM\)\(\Delta ECM\)có :

\(M_1=M_2\)(đối đỉnh)

\(BM=CM\)(gt)

\(AM=EM\)(gt)

\(=>\Delta ABM=\Delta ECM\)(c.g.c)

b,Do \(\Delta ABM=\Delta ECM\)(câu a)

\(=>A=E\)

\(=>AB//EC\)(so le trong)

c, Do \(HF\)là tia đối của tia \(HA\)(1)

\(AHB=90^0\)(2)

Từ (1) và (2) => \(FHB=AHB=90^0\)

Xét \(\Delta AHB\)và \(\Delta FHB\)có :

\(AH=FH\)(gt)

\(HB\)(cạnh chung)

\(AHB=FHB\)(c/m trên)

\(=>\Delta AHB=\Delta FHB\)(c.g.c)

\(=>ABH=FBH\)

\(=>ĐPCM\)

P/S: Chưa check lại và chưa ghi dấu nón cho góc =))

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

AB=AC

=>ABNC là hình bình hành

=>BN=AC=AB

=>ΔBAN cân tạiB

12 tháng 1 2023

            Xét \(\Delta AMB\) và \(\Delta NMC\) có :

                     \(\widehat{AMB}=\widehat{NMC}\) ( đối đỉnh )

                     AM = NM ( gt )

                      MB = MC ( M là trung điểm của BC )

\(\Rightarrow\Delta AMB=\Delta NMC\) ( c.g.c )

\(\Rightarrow\widehat{BAM}=\widehat{CNM}\) ( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong 

\(\Rightarrow AB//NC\) (đpcm)

                Xét \(\Delta AMCvà\Delta NMBcó\) :

                           \(\widehat{AMC}=\widehat{NMB}\) ( đối đỉnh )

                           AM      =  NM ( gt )

                           MC      =   MB   ( M là trung điểm của BC )

\(\Rightarrow\Delta AMC=\Delta NMB\) ( c.g.c )

          Xét \(\Delta AMBvà\Delta AMCcó\) :

                   AM chung

                  MB       = MC  ( M là trung điểm của BC )

                  AB       = AC    (\(\Delta ABC\) cân tại A )

  \(\Rightarrow\Delta AMB=\Delta AMC\) ( c.c.c )

mà \(\Delta NMB=\Delta AMC\)

\(\Rightarrow\Delta AMB=\Delta NMB\) ( tính chất bắc cầu )

\(\Rightarrow BA=BN\) ( 2 cạnh tương ứng )

\(\Rightarrow\Delta ABN\) cân tại B ( đpcm )

22 tháng 3 2023

a) Xét tam giác AMB và tam giác AMC ta có:

AM chung

AB=AC (gt)

MB=MC (vì M là trung điểm của BC)

Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)

b) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc BAM=góc CAM (2 góc tương ứng)

Suy ra AM là tia phân giác của góc BAC (đpcm)

c) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc AMB=góc AMC(2 góc tương ứng)

Mà góc AMB+góc AMC=180 độ (2 góc kề bù)

Suy ra góc AMB=góc AMC=180 độ/2=90 độ

Suy ra AM vuông góc với BC tại M (đpcm)

Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)

 

25 tháng 1 2016

hình như bài này sai đề

 

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

19 tháng 12 2021

\(a,\left\{{}\begin{matrix}AM=MD\\BM=MC\\\widehat{AMB}=\widehat{CMD}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{DCM}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ b,AH\bot BC;DK\bot BC\Rightarrow AH\text{//}DK\\ \left\{{}\begin{matrix}AM=MD\\\widehat{AHM}=\widehat{DKM}=90^0\\\widehat{AMH}=\widehat{KMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AHM=\Delta DKM\left(c.g.c\right)\\ \Rightarrow AH=DK\)

19 tháng 12 2021

a: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD