K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

cm ao và oi cùng đi qua một đường thẳng

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

AD=AE

=>ΔADI=ΔAEI

=>góc DAI=góc EAI

=>AI là phân giác của góc DAE

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó:ΔABD=ΔACE

b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

AD=AE

Do đó: ΔADI=ΔAEI

Suy ra: \(\widehat{DAI}=\widehat{EAI}\)

hay AI là tia phân giác của góc BAC

c: Xét ΔADE có AD=AE
nên ΔADE cân tại A

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó:ΔABD=ΔACE

b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

AD=AE

Do đó: ΔADI=ΔAEI

Suy ra: \(\widehat{DAI}=\widehat{EAI}\)

hay AI là tia phân giác của góc BAC

c: Xét ΔADE có AD=AE
nên ΔADE cân tại A

16 tháng 4 2022

Cứu tớ vsss:<

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đo: ΔABD=ΔACE

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

Do đó: ΔAEI=ΔADI

Suy ra: \(\widehat{EAI}=\widehat{DAI}\)

hay AI là tia phân giác của góc BAC

Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé

30 tháng 12 2021

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)

góc A chung

Do đó tg AEC = tg ADB (ch - gn)

=> BD = CE (đpcm)

b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)

CE = BD (Cmt)

do đó tg CEB = tg BDC (cgv - gnk)

=> góc ECB = góc DBC

=> tam giác BIC cân tại I (đpcm)

c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)

AI chung

BI = IC (tam giác BIC cân (Cmt))

DO đó tg AIC = tg AIB (c.c.c)

=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)

d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A

Mà AI là tia pg của góc EAD nên AI vuông với DE(1)

Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)

Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)

e) ko bt

F) cm vuông như câu d nha

22 tháng 1 2021

Vì tam giác ABC cân tại A (gt)

suy ra: góc ABC = góc ACB

hay góc EBC = góc DCB

Xét tam giác EBC và tam giác DCB có

góc BEC = góc CDB ( =90)

góc EBC = góc DCB (CMT)

BC chung

Suy ra tam giác EBC = tam giác DCB (ch-gn)

suy ra BE=CD (cctu)

22 tháng 1 2021

 Xét tg ABC có:

+ BD là đườg cao (BD vuông góc AC)

+ CE là đg cao (CE vuông góc AB)

Mà BD giao CE tại I (gt)

=> I là trực tâm

=> AI là đường cao

Xét tg ABC cân tai A có: AI là đường cao (cmt)

=> AI cũng là đường pg góc BAC ( Tc tg cân)