K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

hình :  A B C D E

13 tháng 1 2018

vẽ tam giác EBC vuông cân tại E trong tam giác ABC

\(\widehat{EBC}=45^o\)

Ta có : EB2 + EC2 = BC2

2EB2  = 4 ; EB2 = 2 ; EB = \(\sqrt{2}\)

\(\Rightarrow\)EB = AD = \(\sqrt{2}\)

\(\Delta BAE\)\(\Delta CAE\)( c.g.c ) suy ra : \(\widehat{BAE}=\widehat{CAE}=15^o\)

\(\widehat{ABC}=\left(180^o-30^o\right):2=75^o\)

\(\widehat{ABE}=75^o-45^o=30^o\)

\(\Rightarrow\)\(\widehat{ABE}=\widehat{BAD}=30^o\)

\(\Delta ABD=\Delta BAE\)( c.g.c ) suy ra : \(\widehat{ABD}=\widehat{BAE}=15^o\)

b) xét : \(\Delta DBC\)có : \(\widehat{DBC}=75^o-15^o=60^o\)\(\widehat{DCB}=75^o\)và \(\widehat{BDC}=45^o\)

suy ra : \(\widehat{BDC}< \widehat{DBC}< \widehat{DCB}\left(45^o< 60^o< 75^o\right)\)

Do đó : BC < CD < BD

27 tháng 12 2019

A B C E D

A) TRONG \(\Delta ABC\)TA VẼ \(\Delta EBC\)VUÔNG CÂN TẠI E;\(\widehat{EBC}=45^o\)

TA CÓ \(EB^2+EC^2=BC^2\)

\(2EB^2=4;EB^2=2;EB=\sqrt{2}\)

VẬY \(AD=EB=\sqrt{2}\)

\(\Delta BAE=\Delta CAE\left(C-G-C\right)\)

\(\Rightarrow\widehat{BAE}=\widehat{CAE}=15^o\)

\(\widehat{ABC}=\left(180^o-30^o\right):2=75^o;\widehat{ABE}=75^o-45^o=30^o;\)VẬY\(\widehat{ABE}=\widehat{BED}=30^o\)

\(\Delta ABD=\Delta BAE\left(C-G-C\right)\Rightarrow\widehat{ABE}=\widehat{BAE}=15^o\)

B)

\(\Delta DBC\)\(\widehat{DBC}=75^o-15^o=60^o;\widehat{DCB}=75^o\)\(\widehat{BDC}=45^o\)

\(\Rightarrow\widehat{BDC}< \widehat{DBC}< \widehat{DCB}\left(45^o< 60^o< 75^o\right)\)do đó BC<CD<BD( QUAN HỆ BA CẠNH VÀ GÓC ĐỐI DIỆN)

27 tháng 12 2019

ᴾᴿᴼシĐệ❦℘ℛℴ༻꧂

-hình bạn vẽ thiếu dữ kiện nha

Tam giác ABC cân tại A , bạn phải kí hiệu AB=AC chứ

14 tháng 3 2017

A B C D E 1 1 1 2 2 1

\(\Delta ABC\)cân tại A nên\(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{BAC}}{2}=75^0\)

Trên nửa mặt phẳng bờ BC chứa A lấy E sao cho\(\widehat{B_1}=\widehat{C_1}=45^0\)

=>\(\widehat{ABE}=75^0-45^0=30^0;\Delta EBC\)vuông cân tại E =>\(BE=EC=\frac{BC}{\sqrt{2}}=\sqrt{2}\left(cm\right)\)(định lí Pitago)

\(\Delta ABE,\Delta BAD\)có AB chung ; BE = AD\(\left(=\sqrt{2}cm\right)\);\(\widehat{ABE}=\widehat{BAD}\left(=30^0\right)\)

\(\Rightarrow\Delta ABE=\Delta BAD\left(c.g.c\right)\Rightarrow\widehat{A_1}=\widehat{B_2}\)

Lại có\(\Delta AEB=\Delta AEC\left(c.c.c\right)\)nên\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=15^0\Rightarrow\widehat{B_2}=15^0\)

\(\Rightarrow\widehat{D_1}=\widehat{BAD}+\widehat{B_2}=45^0\)(\(\widehat{D_1}\)là góc ngoài\(\Delta ABD\)) ;\(\widehat{DBC}=75^0-15^0=60^0\)

\(\Delta BDC\)\(\widehat{D_1}< \widehat{DBC}< \widehat{DCB}\left(45^0< 60^0< 75^0\right)\)nên BC < DC < BD

14 tháng 3 2017

bai nay trong sach nang cao toan 7 trang 141

27 tháng 2 2021

Tham khảo

* Tự vẽ hình nha !

a. Xét ΔABD và ΔACE ta có:

AB=AC (ΔABC cân tại A)

Góc A là góc chung.

AD=AE (gt)

=> ΔABD=ΔACE (c-g-c)

=> Góc ABD=góc ACE (2 góc tương ứng)

b. Ta có: góc ABD + góc IBC = góc ABC

góc ACE + góc ICB = góc ACB

Mà góc ABC = góc ACB (ΔABC cân tại A)

góc ABD = góc ACE (cmt)

=> Góc IBC = góc ICB

=> ΔIBC cân tại I.

a) Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

AD=AE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)

b) Ta có: AE+EB=AB(E nằm giữa A và B)

AD+DC=AC(D nằm giữa A và C)

mà AE=AD(gt)

và AB=AC(ΔABC cân tại A)

nên EB=DC

Xét ΔEBC và ΔDCB có 

EB=DC(cmt)

\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔBAC cân tại A)

BC chung

Do đó: ΔEBC=ΔDCB(c-g-c)

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định nghĩa tam giác cân)

b: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

=>góc BED=90 độ và DA=DE

c: DA=DE
DE<DC

=>DA<DC

31 tháng 7 2018

ΔABC cân tại A mà BACˆ=300

⇒ABCˆ=ACBˆ=1800−3002=750

Từ A, kẻ AE⊥BD (E∈BD)

kẻ AF⊥BC (F∈BC)

Vì CBDˆ=600(giả thiết)

⇒ABEˆ=750−600=150

Xét ΔABE và ΔBAF có:

AFBˆ=AEBˆ(=900)

Cạnh AB chung

BAFˆ=AEBˆ(=150)

⇒ΔABE=ΔBAF (g.c.g)

⇒AE=BF=12BC=1cm

Mặt khác, trong ΔBDC có:

DBCˆ=600

DCBˆ=750

⇒BDCˆ=450

⇒BDCˆ=ADEˆ (đối đỉnh)

Mà ΔADE vuông tại E

⇒ΔADE vuông cân tại E

⇒AE=ED

Mà AE=BF=1cm (cmt)

⇒ED=1cm

Áp dụng định lí Pytago, ta có:

AD2=EA2+ED2

⇒AD2=12+12=1+1=2

⇒AD=2–√ 

Vậy AD=2–√

9 tháng 2 2019

Đỗ Hoài Chinh mình không hiểu chỗ AF=BF=12BC=1cm 

đáng lẽ 12BC phải bằng 24cm chứ?

giải thích hộ mình nhé