K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

AI NHANH MK TẠNG 3K

13 tháng 5 2019

a) Mk cm trường hợp = nhau c.c.c nhé ! trường hợp c.g.c cũng có thể làm đó bn

Do tam giác ABC cân tại A => AB=AC

                                                 \(\widehat{B}=\widehat{C}\)

Do AM là đường trung tuyến ứng vs cạnh BC => BM=CM

Xét tam giác ABM và tam giác ACM có :

AB = AC ( cm trên )

AM là cạnh chung

BM=CM ( cm trên )

nên tam giác ABM = tam giác ACM

b) Do tam giác ABC cân tại A và có AM là đường trung tuyến => AM cũng là đường trung trực của tam giác ABC ( theo t/c tam giác cân )

( hoặc bn cũng có thể cm cách khác nhưng dài hơn , cách này ngắn nhất đó ! )

19 tháng 6 2020

tự kẻ hình nha

a) vì tam giác ABC cân A=> AB=AC

xét tam giác ABM và tam giác ACM có

A1=A2(gt)

AB=AC(cmt)

AM chung

=> tam giác ABM= tam giác ACM(cgc)

=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ( kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC

b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)

=> M là trung điểm BC=> AM là trung tuyến 

BQ là trung tuyến

mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC

c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm

ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12

vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm

d) vì MD//AC=> CAM=AMD( so le trong)

mà CAM=BAM(gt)

=> BAM=AMD=> tam giác AMD cân D=> AD=DM

vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM

vì AMD+DMB=AMB=> DMB=90 độ-AMD

mà AMD=BAM (cmt)

=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến 

mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng

22 tháng 6 2020
Giải. a) Vì AM là tia phân giác của góc BAC nên
13 tháng 1 2022

a) Xét tam giác ABM và tam giác ACM:

+ AM chung.

+ AB = AC (gt).

\(\widehat{ABM}=\widehat{ACM}\) (AM là phân giác \(\widehat{BAC}\) ).

\(\Rightarrow\) Tam giác ABM = Tam giác ACM (c - g - c).

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.

Mà AM là phân giác \(\widehat{BAC}\) (gt).

\(\Rightarrow\) AM là trung tuyến (Tính chất tam giác cân).

\(\Rightarrow\) M là trung điểm của BC.