Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: BM=CM=3cm
=>AM=4cm
c: Xét ΔHBC có
HM vừa là đường cao, vừa là trung tuyến
=>ΔHBC cân tại H
a ) Do AM là trung tuyến => BM = CM
Xét \(\Delta ABM\)và \(\Delta DCM\)có :
BM = CM ( cm trên )
\(\widehat{BMA}=\widehat{DMC}\)( hai góc đối đỉnh)
MA = MD ( gt )
nên \(\Delta ABM=\Delta DCM\)( c.g.c )
=> \(\widehat{ABM}=\widehat{MCD}\)( hai góc tương ứng )
mà hai góc này lại ở vị trí so le trong => AB//CD
a, vì AM là tpg của A nên BAM=CAM
xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)
=> tam giác AMB=AMC(g.c.g)
b,vì tam giác AMB=AMC nên góc AMB=AMC
mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC
vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)
=> BM=CM=BC:2=3 cm
theo định lí PTG, ta có:
AM2+BM2=AB2
hay AM2= AB2- BM2
<=>AM2=52-32=16
=> AM= 4 cm.
c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)
xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.
ukm. mình nhầm! À mà bạn thi rùi chứ gì bạn giải hộ mình câu này đi
EM CẦN GẤP Ạ