Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"trên tia đối của tia EH lấy điểm P ..." bài này có sai đề không nhỉ, không thể tồn tại hai điểm P, Q thì làm sao vẽ hình được e
Hình tự vẽ nha :
a)
Ta có : HI \(\perp\)AB => AI \(\perp\)IH
<=> AI là đường cao của tam giác AEH
Mà : EI = IH ( gt )
=> tam giác AEH cân tại A
=> AE = AH
b) chứng minh tương tự như câu (a)
\(a,\widehat{AFH}=\widehat{AEH}=\widehat{EAF}=90^0\) nên \(AFHE\) là hcn
\(b,\) Vì \(AFHE\) là hcn nên \(AE=FH=FM\left(t/c.đối.xúng\right);AE//FH\)
\(\left\{{}\begin{matrix}AE=FM\\AE//FM\left(AE//FH\right)\end{matrix}\right.\Rightarrow AEFM\) là hbh
\(c,\) Tam giác AHN có AE vừa là đường cao và trung tuyến nên cân tại A
Do đó AE cũng là p/g \(\widehat{HAN}\)
\(\Rightarrow\widehat{NAE}=\widehat{HAE}\)
Mà \(\widehat{HAE}=\widehat{ACB}\left(cùng.phụ.với.\widehat{ACH}\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{ACB}\left(1\right)\)
Vì AI là trung tuyến ứng với cạnh huyền tam giác ABC vuông tại A nên \(AI=BI=IC=\dfrac{1}{2}BC\Rightarrow\Delta AIB\) cân tại I
\(\Rightarrow\widehat{IAB}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{NAE}+\widehat{IAB}=\widehat{ACB}+\widehat{ABC}=90^0\left(\Delta ABC.vuông.tại.A\right)\\ \Rightarrow\widehat{IAN}=90^0\\ \Rightarrow AI\perp MN\)
\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành
Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn
\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)
Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)
Do đó: ADHE là hình bình hành
\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE
Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)
Do đó \(MN//BH\) hay \(MN//BC\)
Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)
Do đó \(NK//HC\) hay \(NK//BC\)
Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng
a: Xét tứ giác AHBD có
M là trung điểm của AB
M là trung điểm của HD
Do đó: AHBD là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBD là hình chữ nhật
a: Xét tứ giác ADCH có
M là trung điểm chung của AC và HD
góc AHC=90 độ
Do đó: ADCH là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
Vì tam giác ABC cân tại A nên \(\Delta AHB=\Delta AHC\left(g-c-g\right)\Rightarrow HE=HF;AE=AF\)
a.Xét tam giác AEH và tam giác AFH có \(\hept{\begin{cases}HE=HF;AE=AF\left(cmt\right)\\\widehat{E}=\widehat{F}=90^0\end{cases}\Rightarrow\Delta AEH=\Delta AFH}\left(c-g-c\right)\)
b. Có \(AE=AF\Rightarrow\Delta AEF\)cân tại A
Mà \(EF\)song song với BC \(\Rightarrow AH⊥EF\)
Ta có tam giác AEF cân tại A nên có AH vừa là đường cao vừa là đường trung trực
c. Ta có \(HE=HF\)mà \(\hept{\begin{cases}EH=EM\\FH=FN\end{cases}}\)\(\Rightarrow EM=FN\)
Xét tam giác AEM và tam giác AFN có \(\hept{\begin{cases}AE=AF\\\widehat{E}=\widehat{F}=90^0\\EM=FN\end{cases}}\Rightarrow\Delta AEM=\Delta AFN\left(c-g-c\right)\)
\(\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A