Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra:AH=DE
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot25=15\cdot20\)
\(\Leftrightarrow AH\cdot25=300\)
hay AH=12(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Vậy: BC=20cm; AH=12cm; HC=16cm
a) tam giác ABC cân tại A.
AH là đường cao= > đồng thời là trung tuyến, PHÂN GIÁC... => HB=HC
D,E là trung điểm => 4 đoạn DB=BH=HE=EC
tam giác DMB và tam giác ENC:
góc M= góc N=90
DB=EC
góc B=góc C
=> tam giác DMB= tam giác ENC (ch.gn)
=> BM=NC
ta có: BM+AM=AB
NC+AN=AC
MÀ BM=NC. AB=AC => AM=AN
=> TAM GIÁC AMN CÂN TẠI A. AH LÀ PG => AH LÀ ĐƯỜNG CAO <=> AH VUÔNG GÓC MN
B) AH VUÔNG GÓC BC => MN//BC HAY MN//DE
TAM GIÁC DMB= TAM GIÁC ENC (CMT)=> GÓC MDB= GÓC NEC
MÀ MDB=NMD (SLT); GÓC NEC=MNE(SLT)
=> GÓC NMD= GÓC MNE
=> DENM LÀ HÌNH THANG CÂN
HÌNH NÈ