K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHE vuông tại E và ΔABD vuông tại D có 

\(\widehat{EAH}\) chung

Do đó: ΔAHE\(\sim\)ΔABD(g-g)

Suy ra: \(\dfrac{AH}{AB}=\dfrac{AE}{AD}\)

hay \(AB\cdot AE=AH\cdot AD\)

b) Xét ΔEHA vuông tại E và ΔEBC vuông tại E có 

\(\widehat{AHE}=\widehat{CBE}\)(ΔAHE\(\sim\)ΔABD)

Do đó: ΔEHA\(\sim\)ΔEBC(g-g)

Suy ra: \(\dfrac{EH}{EB}=\dfrac{EA}{EC}\)

hay \(EA\cdot EB=EH\cdot EC\)

 

d) Ta có: ΔABC cân tại A(gt)

mà AD là đường cao ứng với cạnh đáy BC(Gt)

nên AD là đường trung tuyến ứng với cạnh BC

Suy ra: \(BD=DC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AD^2+BD^2=AB^2\)

\(\Leftrightarrow AD^2=5^2-3^2=16\)

hay AD=4(cm)

Xét ΔBEC vuông tại E và ΔBDA vuông tại D có 

\(\widehat{B}\) chung

Do đó: ΔBEC\(\sim\)ΔBDA(g-g)

Suy ra: \(\dfrac{BE}{BD}=\dfrac{BC}{BA}\)

\(\Leftrightarrow BE=\dfrac{6\cdot3}{5}=\dfrac{18}{5}=3.6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔBEC vuông tại E, ta được:

\(BC^2=BE^2+EC^2\)

\(\Leftrightarrow EC^2=6^2-3.6^2=23.04\)

hay EC=4,8(cm)

19 tháng 5 2019

a) dễ chứng minh tam giác HBA đồng dạng với tam giác ABC

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\left(1\right)\Rightarrow AB^2=BH\cdot BC\)

b) Xét \(\Delta ABH\)

BD là đường phân giác của \(\Delta ABH\)

suy ra \(\frac{DH}{DA}=\frac{BH}{AB}\left(2\right)\)

Xét \(\Delta ABC\)

BE à đường phân giác của \(\Delta ABC\)

suy ra \(\frac{EA}{EC}=\frac{AB}{BC}\left(3\right)\)

từ 1,2,3 suy ra đpcm

28 tháng 5 2021

A B C 5 5 6 M N

a, Vì CN là phân giác ^C nên : \(\frac{AC}{BC}=\frac{AN}{NB}\)( t/c ) \(\Rightarrow\frac{AC}{AN}=\frac{BC}{NB}\)( tỉ lệ thức )

Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c ) \(\Rightarrow\frac{AB}{AM}=\frac{BC}{MC}\)( tỉ lệ thức )

mà \(AB=AC\)( do tam giác ABC cân ) suy ra : \(\frac{AB}{AM}=\frac{AC}{AN}\)

Vậy MN // BC ( theo talét đảo ) 

28 tháng 5 2021

bổ sung hộ mình phần a là NB = MC ( do là phân giác mà tam giác ABC cân )

b, Xét tam giác ANC và tam giác AMB ta có : 

^A _ chung 

\(\frac{AC}{AN}=\frac{AB}{AM}\)( cma ) 

Vậy tam giác ANC ~ tam giác AMB ( c.g.c )