Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHE vuông tại E và ΔABD vuông tại D có
\(\widehat{EAH}\) chung
Do đó: ΔAHE\(\sim\)ΔABD(g-g)
Suy ra: \(\dfrac{AH}{AB}=\dfrac{AE}{AD}\)
hay \(AB\cdot AE=AH\cdot AD\)
b) Xét ΔEHA vuông tại E và ΔEBC vuông tại E có
\(\widehat{AHE}=\widehat{CBE}\)(ΔAHE\(\sim\)ΔABD)
Do đó: ΔEHA\(\sim\)ΔEBC(g-g)
Suy ra: \(\dfrac{EH}{EB}=\dfrac{EA}{EC}\)
hay \(EA\cdot EB=EH\cdot EC\)
d) Ta có: ΔABC cân tại A(gt)
mà AD là đường cao ứng với cạnh đáy BC(Gt)
nên AD là đường trung tuyến ứng với cạnh BC
Suy ra: \(BD=DC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AD^2+BD^2=AB^2\)
\(\Leftrightarrow AD^2=5^2-3^2=16\)
hay AD=4(cm)
Xét ΔBEC vuông tại E và ΔBDA vuông tại D có
\(\widehat{B}\) chung
Do đó: ΔBEC\(\sim\)ΔBDA(g-g)
Suy ra: \(\dfrac{BE}{BD}=\dfrac{BC}{BA}\)
\(\Leftrightarrow BE=\dfrac{6\cdot3}{5}=\dfrac{18}{5}=3.6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔBEC vuông tại E, ta được:
\(BC^2=BE^2+EC^2\)
\(\Leftrightarrow EC^2=6^2-3.6^2=23.04\)
hay EC=4,8(cm)
a) dễ chứng minh tam giác HBA đồng dạng với tam giác ABC
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\left(1\right)\Rightarrow AB^2=BH\cdot BC\)
b) Xét \(\Delta ABH\)có
BD là đường phân giác của \(\Delta ABH\)
suy ra \(\frac{DH}{DA}=\frac{BH}{AB}\left(2\right)\)
Xét \(\Delta ABC\)có
BE à đường phân giác của \(\Delta ABC\)
suy ra \(\frac{EA}{EC}=\frac{AB}{BC}\left(3\right)\)
từ 1,2,3 suy ra đpcm
A B C 5 5 6 M N
a, Vì CN là phân giác ^C nên : \(\frac{AC}{BC}=\frac{AN}{NB}\)( t/c ) \(\Rightarrow\frac{AC}{AN}=\frac{BC}{NB}\)( tỉ lệ thức )
Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c ) \(\Rightarrow\frac{AB}{AM}=\frac{BC}{MC}\)( tỉ lệ thức )
mà \(AB=AC\)( do tam giác ABC cân ) suy ra : \(\frac{AB}{AM}=\frac{AC}{AN}\)
Vậy MN // BC ( theo talét đảo )
bổ sung hộ mình phần a là NB = MC ( do là phân giác mà tam giác ABC cân )
b, Xét tam giác ANC và tam giác AMB ta có :
^A _ chung
\(\frac{AC}{AN}=\frac{AB}{AM}\)( cma )
Vậy tam giác ANC ~ tam giác AMB ( c.g.c )