Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMHK có
góc AMH=góc AKH=góc KAM=90 độ
=>AMHK là hình chữ nhật
=>AH=MK
b: Xét ΔAHD có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHD cân tại A
=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AH=AE và AC là phân giác của góc HAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
c: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 dộ
=>BD vuông góc DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>goc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra BD//CE
a: E đối xứng M qua AB
nên AB là trung trực của ME
=>AB vuông góc với ME tại trung điểm của ME
=>AB là phân giác của góc EAM(1)
E đối xứng N qua AC
nên AC là trung trực của NE
=>AC vuông góc với NE tại trung điểm của NE
=>AC là phân giác của góc EAN(2)
Xét tứ giác AIEK có
góc AIE=góc AKE=góc KAI=90 độ
nên AIEK làhình chữ nhật
b: Từ (1), (2) suy ra góc NAM=2*90=180 độ
=>N,A,M thẳng hàng
mà AM=AN
nên A là trung điểm của MN
Điểm D đối xứng điểm H qua trục AB.
Suy ra AB là đường trung trực của HD
⇒ AH = AD (tính chất đường trung trực)
⇒ ∆ ADH cân tại A
Suy ra: AB là tia phân giác của ∠ (DAH)
⇒ ∠ (DAB) = ∠ A 1
Điểm H và điểm E đối xứng qua trục AC
⇒ AC là đường trung trực của HE
⇒ AH = AE (tính chất đường trung trực) ⇒ ∆ AHE cân tại A
Suy ra: AC là đường phân giác của góc (HAE) ⇒ ∠ A 2 = ∠ (EAC)
⇒ D, A, E thẳng hàng
Ta có: AD = AE (vì cùng bằng AH)
Suy ra điểm A là trung điểm của đoạn DE.
Vậy điểm D đối xứng với điểm E qua điểm A
Lời giải:
a. Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.
b. Vì $I, H$ đối xứng với nhau qua $E$ nên $E$ là trung điểm của $IH$
Xét tam giác $AIE$ và $AHE$ có:
$AE$ chung
$IE=EH$ (do $E$ là trung điểm $IH$)
$\widehat{AEI}=\widehat{AEH}=90^0$
$\Rightarrow \triangle AIE=\triangle AHE$ (c.g.c)
$\Rightarrow \widehat{IAE}=\widehat{HAE}(1)$
Tương tự: $\triangle AHF=\triangle AKF$ (c.g.c)
$\Rightarrow \widehat{KAF}=\widehat{HAF}(2)$
Từ $(1); (2)\Rightarrow \widehat{IAE}+\widehat{KAF}+\widehat{BAC}=\widehat{HAE}+\widehat{HAF}+\widehat{BAC}$
Hay $\widehat{IAK}=\widehat{BAC}+\widehat{BAC}=90^0+90^0=180^0$
$\Rightarrow I,A,K$ thẳng hàng.
a: Xét tứ giác AKHM có
\(\widehat{AKH}=\widehat{AMH}=\widehat{MAK}=90^0\)
Do đó: AKHM là hình chữ nhật
Suy ra: AH=KM
Bài 2:
a: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
b: Xét tứ giác BHAD có
I là trung điểm của AB
I là trung điểm của HD
Do đó: BHAD là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên BHAD là hình chữ nhật