K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

A B C F E D

\(\Delta ABC\) cân tại A nên đường trung tuyến AD cũng là đường phân giác.

Theo tính chất tia phân giác của một góc, D thuộc tia phân giác của góc A nên cách đều hai cạnh của góc, do đó DE = DF.

16 tháng 3 2019

Vì ΔABC cân tại A và DB = DC (gt) nên đường trung tuyến AD cũng là đường phân giác của ∠(BAC) (tính chất).

Ta có: DE ⊥ AB (gt)

DF ⊥ AC (gt)

Suy ra: DE = DF (tính chất đường phân giác của góc).

30 tháng 8 2017

A B C D E F

Xét tam giác BED và tam giác CFD có:

\(\widehat{BED}=\widehat{CFD}\left(=90^o\right)\)

\(BD=DC\)

\(\widehat{EBD}=\widehat{FCD}\)(tam giác ABC cân)

=>tam giác BED= tam giác CFD (ch-gn)

=> DE=DF

30 tháng 4 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Vì ΔABC cân tại A và DB DC (gt) nên đường trung tuyến AD cũng là đường phân giác của (BAC).

Ta có: DE ⊥ AB (gt)

DF ⊥ AC (gt)

Suy ra: DE = DF (tính chất đường phân giác của góc)

(ĐPCM)

30 tháng 4 2019

HÌNH VẼ

A B C E F D

b) Ta có: BM=CM(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(ΔACB cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

19 tháng 2 2022

a. xét tam giác vuông ADE và tam giác vuông ADF,có :

AB = AC ( ABC cân )

Góc EAD = góc FAD ( gt )

AD : cạnh chung

Vậy  tam giác vuông ADE = tam giác vuông ADF ( c.g.c )

=> DE = DF ( 2 cạnh tương ứng )

b. xét tam giác vuông BDE và tam giác vuông CDF, có:

góc B = góc C ( ABC cân )

BD = CD ( AD là đường phân giác cũng là đường trung tuyến trong tam giác cân ABC )

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền. góc nhọn)

c. ta có: AD là đường phân giác trong tam giác cân ABC cũng là đường trung trực của BC

 

a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)

Do đó: ΔAED=ΔAFD

SUy ra: DE=DF

b: Xét ΔBDE vuông tại E và ΔCDF vuông tại F có 

BD=CD

DE=DF

Do đó: ΔBDE=ΔCDF

c: Ta có: ΔABC cân tại A

mà AD là phân giác

nên AD là đường trung trực của BC

12 tháng 5 2022

 

`Tham` `Khảo:`

undefined

undefined

undefined

12 tháng 5 2022

a,

Ta có : D là trung điểm của BC

Mà Δ ABC cân tại A

=> AD là đường cao

=> AD là đường phân giác \(\widehat{BAC}\)

Xét Δ ABD và Δ ACD, có :

\(\widehat{ADB}=\widehat{ADC}=90^o\)

\(\widehat{ABD}=\widehat{ACD}\) (Δ ABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác \(\widehat{BAC}\))

=> Δ ABD = Δ ACD (g.g.g)

b, Ta có : AD là đường cao (cmt)

=> AD ⊥ BC

c, Xét Δ AED và Δ AFD, có :

AD là cạnh chung

\(\widehat{AED}=\widehat{AFD}=90^o\)

\(\widehat{EAD}=\widehat{FAD}\) (AD là đường phân giác \(\widehat{BAC}\))

=> Δ AED = Δ AFD (g.c.g)

=> ED = FD

Xét Δ EBD vuông tại E và Δ FCD vuông tại F, có :

ED = FD

DB = DC (D là trung điểm BC)

=> Δ EBD = Δ FCD (ch - cgv)

d, Ta có : BC = 2DC (D là trung điểm BC)

=>12 = 2DC

=> DC = 6 (cm)

Xét Δ ADC vuông tại D, có :

\(AC^2=AD^2+DC^2\) (định lí Py - ta - go)

=> \(10^2=AD^2+6^2\)

=> \(64=AD^2\)

=> AD = 8 (cm)