Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuộc trung trực cua BC
Do đó : AM là trung trực của BC
=> AM là phân giác góc BAC
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
suy ra : goc BDC = 30 độ
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuộc trung trực cua BC
Do đó : AM là trung trực của BC
=> AM là phân giác góc BAC
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
suy ra : goc BDC = 30 độ
Sửa đầu bài chỗ AB= BC thì AD = BC mới lm đc:
trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực của BC
Lại có : AB=AC(ABC cân tại A)
=> A thuộc trung trực của BC
Do đó : AM là trung trực của BC
=> AM là phân giác góc BAC
=> góc MAB = góc MAC = gốc BAC /2 = 20 độ/2=10 độ tam giác ABC cân tại A
=> góc CBA = góc BCA = (180 - gốc BAC)/2= (180 - 20)/2 = 80 độ
lại có : góc MCA = góc ACB - góc MCB góc MCB = 60 độ (Tg BCM đều)
Suy ra : góc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chúng CM=ĐA (cùng bằng BC)
góc MCA = góc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> góc CDA = góc CMA = 150 độ
Mặt khác :
góc CDA + góc BDC = 180 độ (2 góc kề bù)
suy ra : góc BDC = 30 độ
a. Xét tam giác ABC và tam giác ADE
AB=AD
BAC=DAE=90*
AC=AE
=> tam giác ABC= tam giác ADE(cgc)
=> BC=DE
b. Gọi giao điểm giữa ED và BC là H
Theo câu a, tam giác ABC= tam giác ADE(cgc) => ACB=AED
Xét tam giác ADE có ADE+AED+DAE=180*
Xét tam giác HDC có
HDC+HCD+DHC=180*
Mà ADE=HDC; AED=HCD
=> DAE=DHC=90*
=> DE vg BC
c. Gọi số đo góc B, C lần lượt là b,c
Do tam giác ABC vuông tại A=> B+C=90* => b+c=90*
Theo bài ra ta có: 4b=5c=> \(\frac{b}{5}=\frac{c}{4}=\frac{b+c}{5+4}=\frac{90}{9}=10\)
=> b=10.5=50*
=> ABC=50* => ADE=50*
Trên nửa mặt phẳng bờ BC dựng \(\Delta\)BCE đều
Xét \(\Delta\)BAE và \(\Delta\) CAE có:
AB = AC (\(\Delta\)ABC cân)
AE: chung
EB = EC (\(\Delta\)BCE đều)
\(\Rightarrow\)\(\Delta\)BAE = \(\Delta\) CAE (c.c.c)
\(\Rightarrow\)BAE = CAE (2 cạnh tương ứng)
\(\Rightarrow\)AE là phân giác BAC
\(\Rightarrow\)BAE = CAE = BAC : 2 = 20o : 2 = 10o
Vì \(\Delta\) ABC cân ở A \(\Rightarrow\)BCA = (180o - BAC) : 2 = 80o
Ta có: \(\Delta\)BCE đều \(\Rightarrow\)ECB = 60o
Có: ACE + ECB = ACB
\(\Rightarrow\)ACE = ACB - ECB = 80o - 60o = 20o
\(\Rightarrow\)ACE = CAD
Xét \(\Delta\)DAC và \(\Delta\)ECA có:
AC: chung
ACE = CAD (cmt)
EC = AD (= BC)
\(\Rightarrow\)\(\Delta\)DAC = \(\Delta\)ECA (c.g.c)
\(\Rightarrow\)EAC = ECA = 10o (2 góc tương ứng)
Ta có: BDC = DAC + ECA = 20o + 10o =30o
Vậy BDC = 30o