K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCED vuông tại E và ΔCFD vuông tại F có

CD chung

\(\widehat{ECD}=\widehat{FCD}\)

Do đó: ΔCED=ΔCFD

=>CE=CF: DE=DF

Xét ΔCEK vuông tại E và ΔCFH vuông tại F có

CE=CF
\(\widehat{ECK}\) chung

Do đó: ΔCEK=ΔCFH

b: Xét ΔDEH vuông tại E và ΔDFK vuông tại F có

DE=DF

\(\widehat{EDH}=\widehat{FDK}\)

Do đó: ΔDEH=ΔDFK

=>DH=DK 

=>D nằm trên đường trung trực của HK(1)

Ta có: CH=CK

=>C nằm trên đường trung trực của HK(2)

Ta có: MH=MK

=>M nằm trên đường trung trực của HK(3)

Từ (1),(2),(3) suy ra C,D,M thẳng hàng

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

18 tháng 12 2016

A B C D H E

a) Xét ΔABH vÀ ΔDBH có:

BH:cạnh chung

\(\widehat{AHB}=\widehat{DHB}=90^o\)

AH=DH(gt)

=> ΔABH=ΔDBH(c.g.c)

b)Xét ΔAHC và ΔDHC có:

AH=DH(gt)

\(\widehat{AHC}=\widehat{DHC}=90^o\)

HC: cạnh chung

=> ΔAHC=ΔDHC(c.g.c)

=> AC=CD

c) Xét ΔBHD và ΔEHA có:

\(\widehat{BHD}=\widehat{EHA}=90^o\)

DH=AH(gt)

\(\widehat{BDH}=\widehat{EAH}\) ( sole trong do AE//BD)

=> ΔBHD=ΔEHA(g.c.g)

=> BH=EH

=>H là trung điểm của BE

28 tháng 4 2019

Sai đề rùi
Góc ABE ko có cắt BD tại F đc nha!!!

28 tháng 4 2019

làm a b thui

29 tháng 3 2018

http://pitago.vn/question/cho-tam-giac-abc-can-o-a-phan-giac-cd-qua-d-ke-tia-df-vuon-13492.html

link nhé bn

a: CD là phân giác

=>góc ECD=góc FCD

b: P thuộc CF

Q thuộc CE

=>góc ECP=góc FCQ

c: Xét ΔCFD vuông tại F và ΔCED vuông tại E có

CD chung

góc FCD=góc ECD

=>ΔCFD=ΔCED

=>CF=CE và DF=DE

Xét ΔCEP vuông tại E và ΔCFQ vuông tại F có

CE=CF

góc ECP chung

=>ΔCEP=ΔCFQ

=>CP=CQ

=>ΔCPQ cân tại C

mà CM là trung tuyến

nên CM là phân giác

=>C,D,M thẳng hàng

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔABD=ΔHBD

b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó: ΔADK=ΔHDC

Suy ra: DK=DC

c: Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

hay ΔBKC cân tại B