K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

*Bạn tự vẽ kình nha

a) Xét \(\Delta\) IHC có J, M là trung điểm của IH,IC

=> JM là đường trung bình

=> +) JM = 1/2 HC

     +) JM // HC 

Có AK // BC mà H thuộc BC => AK // HC

                                            mà JM // HC (cmt) 

=>AK // JM

Lại có N là trung điểm của AK => +) N\(\in\)AK 

                                                  mà AK // JM (cmt) => AN // JM (1)

                                                      +) AN = 1/2 AK

Xét tứ giác AKNH có AK // Hc , AH // KC

=> AKNH là hình bình hành => AK = HC

                                            Có : AN = 1/2 AK

                                                    JM = 1/2 HC

=> AN = JM (2)

Từ (1) và (2) => tứ giác ANMJ là hình bình hành

10 tháng 8 2017

Xem lại đề nhà bạn, BI vuông góc với MN thì hơi vô lí, BI vuông góc với AN thôi

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

11 tháng 12 2023

a: Xét tứ giác AHCE có

D là trung điểm chung của aC và HE

=>AHCE là hình bình hành

Hình bình hành AHCE có \(\widehat{AHC}=90^0\)

nên AHCE là hình chữ nhật

b:Ta có: AHCE là hình bình hành

=>AE//CH và AE=CH

=>AE//IH

Xét tứ giác AEHI có

AE//HI

AI//EH

Do đó: AEHI là hình bình hành

c: Ta có: AEHI là hình bình hành

=>AE=HI

mà AE=HC

nên HI=HC

=>H là trung điểm của CI

Xét tứ giác ACKI có

H là trung điểm chung của AK và CI

=>ACKI là hình bình hành

Hình bình hành ACKI có AK\(\perp\)CI

nên ACKI là hình thoi

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

7 tháng 10 2021

 

\(a,DK//AB\Rightarrow ABDK\) là hình thang

Mà \(\widehat{KAB}=90^0\) nên ABDK là hình thang vuông

\(b,\) Ta thấy EH,HD vừa là đg cao vừa là trung tuyến nên tg AED,EDB cân tại E,D

\(\Rightarrow\widehat{EAD}=\widehat{EDA}\) và HD là phân giác của tg EDB

\(\Rightarrow\widehat{EDA}=\widehat{ADB}\)

\(\Rightarrow\widehat{EAD}=\widehat{ADB}\)

Mà 2 góc này ở vị trí so le trong nên AE//BD

Mà ED//AB (gt)

Vậy ABDE là hbh